
Introduction to Computer Systems, Peking University

Instructors:
Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao
Class 3: Lu Junlin

Processor Architecture I:
ISA & Logic Design
Introduction to Computer Systems
9th Lecture, Oct 16, 2025

Introduction to Computer Systems, Peking University

Part A
Instruction Set Architecture

Introduction to Computer Systems, Peking University

Instruction Set Architecture
n Assembly Language View

n Processor state
l Registers, memory, …

n Instructions
l addq, pushq, ret, …
l How instructions are encoded

as bytes

n Layer of Abstraction
n Above: how to program machine

l Processor executes instructions
in a sequence

n Below: what needs to be built
l Use variety of tricks to make it

run fast
l E.g., execute multiple

instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

Introduction to Computer Systems, Peking University

ZF SF OF

Y86-64 Processor State

n Program Registers
l 15 registers (omit %r15). Each 64 bits

n Condition Codes
l Single-bit flags set by arithmetic or logical instructions

» ZF: Zero SF:Negative OF: Overflow
n Program Counter

l Indicates address of next instruction
n Program Status

l Indicates either normal operation or some error condition
n Memory

l Byte-addressable storage array
l Words stored in little-endian byte order

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%rax

%rcx

%rdx

%rbx

%rsp

%rbp

%rsi

%rdi

Introduction to Computer Systems, Peking University

Y86-64 Instruction Set #1
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

Introduction to Computer Systems, Peking University

Y86-64 Instructions
n Format

n 1–10 bytes of information read from memory
l Can determine instruction length from first byte
l Not as many instruction types, and simpler encoding than with

x86-64
n Each accesses and modifies some part(s) of the program

state

Introduction to Computer Systems, Peking University

0 1 2 3 4 5 6 7 8 9

V

D

D

Y86-64 Instruction Set #2
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

rrmovq 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6

Introduction to Computer Systems, Peking University

Y86-64 Instruction Set #3
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

addq 6 0

subq 6 1

andq 6 2

xorq 6 3

Introduction to Computer Systems, Peking University

Y86-64 Instruction Set #4
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

Introduction to Computer Systems, Peking University

Encoding Registers
n Each register has 4-bit ID

n Same encoding as in x86-64

n Register ID 15 (0xF) indicates “no register”
n Will use this in our hardware design in multiple places

%rax

%rcx

%rdx

%rbx

0

1

2

3

%rsp

%rbp

%rsi

%rdi

4

5

6

7

%r8

%r9

%r10

%r11

8

9

A

B

%r12

%r13

%r14

No Register

C

D

E

F

Introduction to Computer Systems, Peking University

Instruction Example
n Addition Instruction

n Add value in register rA to that in register rB
l Store result in register rB
l Note that Y86-64 only allows addition to be applied to register

data
n Set condition codes based on result
n e.g., addq %rax,%rsi Encoding: 60 06

n Two-byte encoding
l First indicates instruction type
l Second gives source and destination registers

addq rA, rB 6 0 rA rB

Encoded Representation

Generic Form

Introduction to Computer Systems, Peking University

Arithmetic and Logical Operations
n Refer to generically as

“OPq”
n Encodings differ only by

“function code”
l Low-order 4 bytes in first

instruction word
n Set condition codes as

side effect

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

Introduction to Computer Systems, Peking University

Move Operations

n Like the x86-64 movq instruction
n Simpler format for memory addresses
n Give different names to keep them distinct

rrmovq rA, rB 2 0

Register è Register

Immediate è Register

irmovq V, rB F rB3 0 V

Register è Memory

rmmovq rA, D(rB) 4 0 rA rB D

Memory è Register

mrmovq D(rB), rA 5 0 rA rB D

rA rB

Introduction to Computer Systems, Peking University

Move Instruction Examples

irmovq $0xabcd, %rdxmovq $0xabcd, %rdx

30 f2 cd ab 00 00 00 00 00 00

X86-64 Y86-64

Encoding:

rrmovq %rsp, %rbxmovq %rsp, %rbx

20 43

mrmovq -12(%rbp),%rcxmovq -12(%rbp),%rcx

50 15 f4 ff ff ff ff ff ff ff

rmmovq %rsi,0x41c(%rsp)movq %rsi,0x41c(%rsp)

40 64 1c 04 00 00 00 00 00 00

Encoding:

Encoding:

Encoding:

Introduction to Computer Systems, Peking University

Conditional Move Instructions
n Refer to generically as

“cmovXX”
n Encodings differ only by

“function code”
n Based on values of

condition codes
n Variants of rrmovq

instruction
l (Conditionally) copy value

from source to destination
register

rrmovq rA, rB

Move Unconditionally

cmovle rA, rB

Move When Less or Equal

cmovl rA, rB

Move When Less

cmove rA, rB

Move When Equal

cmovne rA, rB

Move When Not Equal

cmovge rA, rB

Move When Greater or Equal

cmovg rA, rB

Move When Greater

2 0 rA rB

2 1 rA rB

2 2 rA rB

2 3 rA rB

2 4 rA rB

2 5 rA rB

2 6 rA rB

Introduction to Computer Systems, Peking University

Jump Instructions

n Refer to generically as “jXX”
n Encodings differ only by “function code” fn
n Based on values of condition codes
n Same as x86-64 counterparts
n Encode full destination address

l Unlike PC-relative addressing seen in x86-64

jXX Dest 7 fn

Jump (Conditionally)

Dest

Introduction to Computer Systems, Peking University

Jump Instructions
jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

Introduction to Computer Systems, Peking University

Y86-64 Program Stack
n Region of memory holding

program data
n Used in Y86-64 (and x86-64) for

supporting procedure calls
n Stack top indicated by %rsp

l Address of top stack element
n Stack grows toward lower

addresses
l Top element is at highest

address in the stack
l When pushing, must first

decrement stack pointer
l After popping, increment stack

pointer
%rsp

•

•

•

Increasing
Addresses

Stack “Top”

Stack
“Bottom”

Introduction to Computer Systems, Peking University

Stack Operations

n Decrement %rsp by 8
n Store word from rA to memory at %rsp
n Like x86-64

n Read word from memory at %rsp
n Save in rA
n Increment %rsp by 8
n Like x86-64

pushq rA A 0 rA F

popq rA B 0 rA F

Introduction to Computer Systems, Peking University

Subroutine Call and Return

n Push address of next instruction onto stack
n Start executing instructions at Dest
n Like x86-64

n Pop value from stack
n Use as address for next instruction
n Like x86-64

call Dest 8 0 Dest

ret 9 0

Introduction to Computer Systems, Peking University

Miscellaneous Instructions

n Don’t do anything

n Stop executing instructions
n x86-64 has comparable instruction, but can’t execute it

in user mode
n We will use it to stop the simulator
n Encoding ensures that program hitting memory

initialized to zero will halt

nop 1 0

halt 0 0

Introduction to Computer Systems, Peking University

Status Conditions

Mnemonic Code
ADR 3

Mnemonic Code
INS 4

Mnemonic Code
HLT 2

Mnemonic Code
AOK 1

n Normal operation

n Halt instruction encountered

n Bad address (either instruction or data)
encountered

n Invalid instruction encountered

n Desired Behavior
n If AOK, keep going
n Otherwise, stop program execution

Introduction to Computer Systems, Peking University

Writing Y86-64 Code
n Try to Use C Compiler as Much as Possible

n Write code in C
n Compile for x86-64 with gcc –Og –S

n Transliterate into Y86-64
n Modern compilers make this more difficult

n Coding Example
n Find number of elements in null-terminated list

int len1(int a[]);
5043

6125

7395

0

a

Þ 3

Introduction to Computer Systems, Peking University

Y86-64 Code Generation Example
nFirst Try

n Write typical array code

n Compile with gcc -Og -S

nProblem
n Hard to do array indexing on

Y86-64
l Since don’t have scaled

addressing modes/* Find number of elements in
null-terminated list */

long len(long a[])
{
long len;
for (len = 0; a[len]; len++)

;
return len;

}

L3:
addq $1,%rax
cmpq $0, (%rdi,%rax,8)
jne L3

Introduction to Computer Systems, Peking University

Y86-64 Code Generation Example #2
nSecond Try

n Write C code that mimics
expected Y86-64 code

nResult
n Compiler generates exact

same code as before!
n Compiler converts both

versions into same
intermediate form

long len2(long *a)
{

long ip = (long) a;
long val = *(long *) ip;
long len = 0;
while (val) {

ip += sizeof(long);
len++;
val = *(long *) ip;

}
return len;

}

Introduction to Computer Systems, Peking University

Y86-64 Code Generation Example #3
len:

irmovq $1, %r8 # Constant 1
irmovq $8, %r9 # Constant 8
irmovq $0, %rax # len = 0
mrmovq (%rdi), %rdx # val = *a
andq %rdx, %rdx # Test val
je Done # If zero, goto Done

Loop:
addq %r8, %rax # len++
addq %r9, %rdi # a++
mrmovq (%rdi), %rdx # val = *a
andq %rdx, %rdx # Test val
jne Loop # If !0, goto Loop

Done:
ret

Register Use
%rdi a
%rax len
%rdx val
%r8 1
%r9 8

Introduction to Computer Systems, Peking University

Y86-64 Sample Program Structure #1
n Program starts at

address 0
n Must set up stack

l Where located
l Pointer values
l Make sure don’t

overwrite code!
n Must initialize data

init: # Initialization
. . .
call Main
halt

.align 8 # Program data
array:

. . .

Main: # Main function
. . .
call len . . .

len: # Length function
. . .

.pos 0x100 # Placement of stack
Stack:

Introduction to Computer Systems, Peking University

Y86-64 Program Structure #2
n Program starts at

address 0
n Must set up stack
n Must initialize data
n Can use symbolic

names

init:
Set up stack pointer
irmovq Stack, %rsp
Execute main program
call Main
Terminate
halt

Array of 4 elements + terminating 0
.align 8

Array:
.quad 0x000d000d000d000d
.quad 0x00c000c000c000c0
.quad 0x0b000b000b000b00
.quad 0xa000a000a000a000
.quad 0

Introduction to Computer Systems, Peking University

Y86-64 Program Structure #3

n Set up call to len
n Follow x86-64 procedure conventions
n Push array address as argument

Main:
irmovq array,%rdi
call len(array)
call len
ret

Introduction to Computer Systems, Peking University

Assembling Y86-64 Program

n Generates “object code” file len.yo
l Actually looks like disassembler output

unix> yas len.ys

0x054: | len:
0x054: 30f80100000000000000 | irmovq $1, %r8 # Constant 1
0x05e: 30f90800000000000000 | irmovq $8, %r9 # Constant 8
0x068: 30f00000000000000000 | irmovq $0, %rax # len = 0
0x072: 50270000000000000000 | mrmovq (%rdi), %rdx # val = *a
0x07c: 6222 | andq %rdx, %rdx # Test val
0x07e: 73a000000000000000 | je Done # If zero, goto Done
0x087: | Loop:
0x087: 6080 | addq %r8, %rax # len++
0x089: 6097 | addq %r9, %rdi # a++
0x08b: 50270000000000000000 | mrmovq (%rdi), %rdx # val = *a
0x095: 6222 | andq %rdx, %rdx # Test val
0x097: 748700000000000000 | jne Loop # If !0, goto Loop
0x0a0: | Done:
0x0a0: 90 | ret

Introduction to Computer Systems, Peking University

Simulating Y86-64 Program

n Instruction set simulator
l Computes effect of each instruction on processor state
l Prints changes in state from original

unix> yis len.yo

Stopped in 33 steps at PC = 0x13. Status 'HLT', CC Z=1 S=0 O=0
Changes to registers:
%rax: 0x0000000000000000 0x0000000000000004
%rsp: 0x0000000000000000 0x0000000000000100
%rdi: 0x0000000000000000 0x0000000000000038
%r8: 0x0000000000000000 0x0000000000000001
%r9: 0x0000000000000000 0x0000000000000008

Changes to memory:
0x00f0: 0x0000000000000000 0x0000000000000053
0x00f8: 0x0000000000000000 0x0000000000000013

Introduction to Computer Systems, Peking University

CISC Instruction Sets
n Complex Instruction Set Computer
n IA32 is example

n Stack-oriented instruction set
n Use stack to pass arguments, save program counter
n Explicit push and pop instructions

n Arithmetic instructions can access memory
n addq %rax, 12(%rbx,%rcx,8)

l requires memory read and write
l Complex address calculation

n Condition codes
n Set as side effect of arithmetic and logical instructions

n Philosophy
n Add instructions to perform “typical” programming tasks

Introduction to Computer Systems, Peking University

RISC Instruction Sets
n Reduced Instruction Set Computer
n Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)

n Fewer, simpler instructions
n Might take more to get given task done
n Can execute them with small and fast hardware

n Register-oriented instruction set
n Many more (typically 32) registers
n Use for arguments, return pointer, temporaries

n Only load and store instructions can access memory
n Similar to Y86-64 mrmovq and rmmovq

n No Condition codes
n Test instructions return 0/1 in register

Introduction to Computer Systems, Peking University

MIPS Registers
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9

$10
$11
$12
$13
$14
$15

$0
$at
$v0
$v1
$a0
$a1
$a2
$a3
$t 0
$t 1
$t 2
$t 3
$t 4
$t 5
$t 6
$t 7

Constant 0
Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16
$17
$18
$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31

$s0
$s1
$s2
$s3
$s4
$s5
$s6
$s7
$t 8
$t 9
$k0
$k1
$gp
$sp
$s8
$r a

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer
Callee Save Temp
Return Address

Introduction to Computer Systems, Peking University

MIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000
R-R

Op Ra Rb Immediate
R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset
Branch

beq $3,$2,dest # Branch when $3 = $2

Introduction to Computer Systems, Peking University

CISC vs. RISC
n Original Debate

n Strong opinions!
n CISC proponents---easy for compiler, fewer code bytes
n RISC proponents---better for optimizing compilers, can make

run fast with simple chip design

n Current Status
n For desktop processors, choice of ISA not a technical issue

l With enough hardware, can make anything run fast
l Code compatibility more important

n x86-64 adopted many RISC features
l More registers; use them for argument passing

n For embedded processors, RISC makes sense
l Smaller, cheaper, less power
l Most cell phones use ARM processor

Introduction to Computer Systems, Peking University

Summary
n Y86-64 Instruction Set Architecture

n Similar state and instructions as x86-64
n Simpler encodings
n Somewhere between CISC and RISC

n How Important is ISA Design?
n Less now than before

l With enough hardware, can make almost anything go fast

Introduction to Computer Systems, Peking University

Part B
Logic Design

Introduction to Computer Systems, Peking University

Overview of Logic Design
n Fundamental Hardware Requirements

n Communication
l How to get values from one place to another

n Computation
n Storage

n Bits are Our Friends
n Everything expressed in terms of values 0 and 1
n Communication

l Low or high voltage on wire
n Computation

l Compute Boolean functions
n Storage

l Store bits of information

Introduction to Computer Systems, Peking University

Digital Signals

n Use voltage thresholds to extract discrete values from
continuous signal

n Simplest version: 1-bit signal
l Either high range (1) or low range (0)
l With guard range between them

n Not strongly affected by noise or low quality circuit elements
l Can make circuits simple, small, and fast

Voltage

Time

0 1 0

Introduction to Computer Systems, Peking University

Computing with Logic Gates

n Outputs are Boolean functions of inputs
n Respond continuously to changes in inputs

l With some, small delay

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

Introduction to Computer Systems, Peking University

Combinational Circuits

n Acyclic Network of Logic Gates
n Continously responds to changes on primary inputs
n Primary outputs become (after some delay) Boolean

functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

Introduction to Computer Systems, Peking University

Bit Equality

n Generate 1 if a and b are equal

n Hardware Control Language (HCL)
n Very simple hardware description language

l Boolean operations have syntax similar to C logical operations
n We’ll use it to describe control logic for processors

Bit equal
a

b

eq
bool eq = (a&&b)||(!a&&!b)

HCL Expression

Introduction to Computer Systems, Peking University

Word Equality

n 64-bit word size
n HCL representation

l Equality operation
l Generates Boolean value

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Word-Level Representation

bool Eq = (A == B)

HCL Representation

Introduction to Computer Systems, Peking University

Bit-Level Multiplexor

n Control signal s
n Data signals a and b
n Output a when s=1, b when s=0

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

Introduction to Computer Systems, Peking University

Word Multiplexor

n Select input word A or B
depending on control signal s

n HCL representation
l Case expression
l Series of test : value pairs
l Output value for first

successful test

Word-Level Representation

HCL Representation

b63

s

a63

out63

b62

a62

out62

b0

a0

out0

int Out = [
s : A;
1 : B;

];

s

B

A
OutMUX

Introduction to Computer Systems, Peking University

HCL Word-Level Examples

n Find minimum of three
input words

n HCL case expression
n Final case guarantees

match
A

Min3MIN3B
C

int Min3 = [
A < B && A < C : A;
B < A && B < C : B;
1 : C;

];

D0

D3

Out4

s0
s1

MUX4
D2
D1

n Select one of 4 inputs
based on two control
bits

n HCL case expression
n Simplify tests by

assuming sequential
matching

int Out4 = [
!s1&&!s0: D0;
!s1 : D1;
!s0 : D2;
1 : D3;

];

Minimum of 3 Words

4-Way Multiplexor

Introduction to Computer Systems, Peking University

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

n Combinational logic
l Continuously responding to inputs

n Control signal selects function computed
l Corresponding to 4 arithmetic/logical operations in Y86-64

n Also computes values for condition codes

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

Introduction to Computer Systems, Peking University

Registers

n Stores word of data
l Different from program registers seen in assembly code

n Collection of edge-triggered latches
n Loads input on rising edge of clock

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure

Introduction to Computer Systems, Peking University

Register Operation

n Stores data bits
n For most of time acts as barrier between input and output
n As clock rises, loads input

State = x
Rising
clock_

Output = xInput = y
x _

State = y

Output = y
y

Introduction to Computer Systems, Peking University

State Machine Example

n Accumulator
circuit

n Load or
accumulate on
each cycle

Comb. Logic

A
L
U

0

Out
MUX

0

1

Clock

In
Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

Introduction to Computer Systems, Peking University

Random-Access Memory

n Stores multiple words of memory
l Address input specifies which word to read or write

n Register file
l Holds values of program registers
l %rax, %rsp, etc.
l Register identifier serves as address

» ID 15 (0xF) implies no read or write performed
n Multiple Ports

l Can read and/or write multiple words in one cycle
» Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

Introduction to Computer Systems, Peking University

Register File Timing
n Reading

n Like combinational logic
n Output data generated based on

input address
l After some delay

n Writing
n Like register
n Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file

W dstW

valW

Clock

x2
Rising
clock_ _ Register

file
W dstW

valW

Clock

y2

x2

x

2

Introduction to Computer Systems, Peking University

Hardware Control Language
n Very simple hardware description language
n Can only express limited aspects of hardware operation

l Parts we want to explore and modify

n Data Types
n bool: Boolean

l a, b, c, …
n int: words

l A, B, C, …
l Does not specify word size---bytes, 64-bit words, …

n Statements
n bool a = bool-expr ;

n int A = int-expr ;

Introduction to Computer Systems, Peking University

HCL Operations
n Classify by type of value returned

n Boolean Expressions
n Logic Operations

l a && b, a || b, !a
n Word Comparisons

l A == B, A != B, A < B, A <= B, A >= B, A > B
n Set Membership

l A in { B, C, D }
» Same as A == B || A == C || A == D

n Word Expressions
n Case expressions

l [a : A; b : B; c : C]
l Evaluate test expressions a, b, c, … in sequence
l Return word expression A, B, C, … for first successful test

Introduction to Computer Systems, Peking University

Summary
n Computation

n Performed by combinational logic
n Computes Boolean functions
n Continuously reacts to input changes

n Storage
n Registers

l Hold single words
l Loaded as clock rises

n Random-access memories
l Hold multiple words
l Possible multiple read or write ports
l Read word when address input changes
l Write word as clock rises

Introduction to Computer Systems, Peking University

Additional Slides

Introduction to Computer Systems, Peking University

V1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1

Storing 1 Bit
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

Introduction to Computer Systems, Peking University

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Storing 1 Bit (cont.)
Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin V1

V2

Vin = V2

Stable 0

Stable 1

Metastable

Introduction to Computer Systems, Peking University

Physical Analogy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

V1
V2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Vin
V2

Stable 0

Stable 1

Metastable

.Stable left . Stable right.

Metastable

Introduction to Computer Systems, Peking University

Storing and Accessing 1 Bit

Q+

Q–

R

S

R-S Latch

Resetting
1

0

1 0

0 1

Setting
0

1

0 1

1 0

Storing
0

0

!q q

q !q

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Introduction to Computer Systems, Peking University

1-Bit Latch
D Latch

Q+

Q–

R

S

D

C

Data

Clock

Latching

1

d !d !d !d d

d d !d
0

Storing

d !d q

!q

!q

q0

0

Introduction to Computer Systems, Peking University

Transparent 1-Bit Latch

n When in latching mode, combinational propogation from D
to Q+ and Q–

n Value latched depends on value of D as C falls

C

D

Q+
Time

Changing DLatching

1

d !d !d !d d

d d !d

Introduction to Computer Systems, Peking University

Edge-Triggered Latch

n Only in latching mode
for brief period
l Rising clock edge

n Value latched depends
on data as clock rises

n Output remains stable at
all other times

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

C

D

Q+

Time

T

