Introduction to Computer Systems, Peking University

Processor Architecture I:
ISA & Logic Design

Introduction to Computer Systems
oth L ecture, Oct 16, 2025

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao

Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

Part A

Instruction Set Architecture

Instruction Set Architecture

B Assembly Language View

m Processor state Application
e Registers, memory, ... Program
m Instructions _
® addq, pushgq, ret, ... SEmEET] o
® How instructions are encoded
as bytes
] CPU
B Layer of Abstraction Design
m Above: how to program machine Circuit
® Processor executes instructions Design
in a sequence
. . Chip
m Below: what needs to be built Layout
® Use variety of tricks to make it

run fast

e E.g., execute multiple
instructions simultaneously

Y86-64 Processor State

RF: Program CC:)
registers Condition Stat: Program status
codes
Frax Irsp %r8 %rl2
$rex $rbp $r9 $rl3 ZF|SF|OF DMEM: Memory
$rdx $rsi $rl0 $rld PC
%rbx srdi %rll

m Program Registers
® 15 registers (omit $r15). Each 64 bits

m Condition Codes
® Single-bit flags set by arithmetic or logical instructions
» ZF: Zero SF:Negative OF: Overflow

m Program Counter
® Indicates address of next instruction

m Program Status
® Indicates either normal operation or some error condition

= Memory
e Byte-addressable storage array
e Words stored in little-endian byte order

Introduction to Computer Systems, Peking University

Y86-64 Instruction Set #1

Byte 0 7 8 9
halt 010

nop 110

cmovxXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310]|F|rB Vv
rmmovqg rA, DB) |4 |0 |rA|rB D
mrmovg D (rB), rA | 5| 0 |rA|rB D
OPg rA, B 6 | fn]rA|rB

jXX Dest 7 | fn Dest
call Dest 810 Dest

ret 910

pushqg rA A|O|JrA|F

popg rA B|O|rA|F

| |
Y86-64 Instructions

B Format

m 1-10 bytes of information read from memory
® Can determine instruction length from first byte

® Not as many instruction types, and simpler encoding than with
x86-64

m Each accesses and modifies some part(s) of the program
state

Introduction to Computer Systems, Peking University

|
Y86-64 Instruction Set #2 ... —
Byte 0 1 2 3 4 5 6
cmovle 211
halt 010
cmovl 212
nop 110
- cmove 213
cmovxXX rA, rB 2 | fn|rA | rB <
cmovne 2| 4
irmovg V, rB 310]|F|rB Vv
cmovge 215
rmmovqg rA, DB) |4 |0 |rA|rB D
\cmovg 2|6
mrmovg D (rB), rA | 5| 0 |rA|rB D
OPg rA, B 6 | fn]rA|rB
jXX Dest 7 | fn Dest
call Dest 810 Dest
ret 910
pushqg rA A|O|JrA|F
popg rA B|OJ|rA| F

Y86-64 Instruction Set #3

Byte 0 8 9
halt 010
nop 110
cmovxXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]|F|rB Vv
rmmovqg rA, DB) |4 |0 |rA|rB D

addg | 6| 0
mrmovg D (rB), rA | 5| 0 |rA|rB D

subg | 6 | 1
OPg rA, B 6 [fn [rA] B — <

andg 6| 2
jXX Dest 7 | fn Dest

X xorg | 6| 3

call Dest 810 Dest .
ret 910
pushqg rA A|O|JrA|F
popg rA B|OJ|rA| F

Y86-64 Instruction Set #4

Byte 0 (dme | 710

halt 010 jle 711

nop 110 j1 72

cmovXX rA, rB 2 | fn|rA|rB < je 713
/

irmovg V, rB 3|0 F|rB \Y / jne 7| 4

rmmovg rA, D(B) |4 | 0]rA|rB D // jge 715

mrmovg D(rB), rA | 5| 0 |rA|rB D // \ jg 7|6

OPg rA, B 6 |fn|rA|rB /

jXX Dest 7 | fn Dest

call Dest 810 Dest

ret 910

pushg rA A|OJrA| F

popqg rA B|O|rA| F

u u
Encoding Registers

B Each register has 4-bit ID

¥rax 0 %r8 8
grcx 1 %r9 9
grdx 2 %rl0 A
%rbx 3 grll B
Irsp 4 %rl2 Cc
%rbp 5 %rl3 D
grsi 6 %rl4 E
$rdi 7 No Register| F

m Same encoding as in x86-64

B Register ID 15 (0xF) indicates “no register”
m Will use this in our hardware design in multiple places

Introduction to Computer Systems, Peking University

Instruction Example

B Addition Instruction

/ Generic Form

/
addqg rA, rB 6| 0|rA|rB

Encoded Representation

m Add value in register rA to that in register rB
e Store result in register rB
® Note that Y86-64 only allows addition to be applied to register
data

m Set condition codes based on result
m e.g., addg %rax,%rsi Encoding: 60 06
m Two-byte encoding

® First indicates instruction type
® Second gives source and destination registers

Introduction to Computer Systems, Peking University

Arithmetic and Logical Operations

Instruction Code Function Code]
Add N\ / m Refer to generically as
~ s “OPq,,
addq rA, 1B 6] OJrA|rB = Encodings differ only by

“function code”

Subtract (rA from rB) e Low-order 4 bytes in first

subq rA, rB 6 1lrAlrB instruction word
m Set condition codes as
And side effect
andqg rA, rB 6| 2|rArB

Exclusive-Or

xorq rA, rB 6|3|rA|rB

Introduction to Computer Systems, Peking University
Move Operations

Register = Register

rrmovq rA, rB 2|0|rArB

Immediate = Register

irmovgV, rB 3|0|F|rB Vv

Register & Memory
rmmovqg rA, D(rB)| 4 | 0 |[rA|rB D

Memory = Register
mrmovq D (rB), rA | 5| 0 |rA|rB D

m Like the x86-64 movqg instruction
m Simpler format for memory addresses
m Give different names to keep them distinct

Introduction to Computer Systems, Peking University

Move Instruction Examples

X86-64 Y86-64
movqg $0xabcd, %$rdx irmovq $0xabcd, %$rdx

Encoding: 30 £2 cd ab 00 00 00 00 00 00

movq 3rsp, 3%rbx rrmovq 3%rsp, 3%rbx

Encoding: 20 43

movq -12 (%rbp) , $rcx mrmovq -12 (%rbp) ,%rcx
Encoding: 50 15 £4 ff ff f£f ff ff ff f£f
movqg %rsi,0x4lc (%rsp) rmmovqg %rsi,0x4lc (%rsp)

Encoding: 40 64 1c 04 00 00 00 00 00 0O

Conditional Move Instructions

Move Unconditionally

rrmovq rA, rB 2|0|rA|rB m Refer to generically as
“cmovXX”

m Encodings differ only by
“function code”

m Based on values of

Move When Less or Equal
cmovle rA, rB 2 1|rA|rB

Move When Less

A, rB 2|2 .o
cmovl FA, rArB condition codes
Move When Equal m Variants of rrmovq
cmove rA, rB 2| 3|rArB instruction
Move When Not Equal e (Conditionally) copy value
cmovne rA, rB > 12 IrArB from source to destination
register

Move When Greater or Equal

cmovge rA, rB 2| 5|rA|rB

Move When Greater

cmovg rA, rB 2| 6|rA|rB

|
Jump Instructions

Jump (Conditionally)

jXX Dest | 7 |fn Dest

Refer to generically as “jxx”

Encodings differ only by “function code” fn
Based on values of condition codes

Same as x86-64 counterparts

Encode full destination address
e Unlike PC-relative addressing seen in x86-64

|
Jump Instructions

Jump Unconditionally

jmp Dest |7 | 0 Dest

Jump When Less or Equal

jleDest |7 |1 Dest

Jump When Less

j1 Dest 712 Dest

Jump When Equal

je Dest 713 Dest

Jump When Not Equal

jne Dest |7 | 4 Dest

Jump When Greater or Equal

jge Dest 715 Dest

Jump When Greater

jg Dest 716 Dest

Introduction to Computer Systems, Peking University

Y86-64 Program Stack

Stack . i
“Bottom” m Region of memory holding
program data
m Used in Y86-64 (and x86-64) for
supporting procedure calls
m Stack top indicated by $rsp
. e Address of top stack element
Increasing . = Stack grows toward lower
Addresses
. addresses

® Top element is at highest
address in the stack

® When pushing, must first
decrement stack pointer

e After popping, increment stack
pointer

—— JIrsp

Stack “Top”

Introduction to Computer Systems, Peking University

Stack Operations

pushqg rA A|O|JrA| F

m Decrement $rsp by 8
m Store word from rA to memory at 3rsp
m Like x86-64

popq rA B/ O|rA| F

m Read word from memory at $rsp
m SaveinrA

m Increment $rsp by 8

m Like x86-64

Subroutine Call and Return

call Dest 8|0 Dest

m Push address of next instruction onto stack
m Start executing instructions at Dest
m Like x86-64

ret 90

m Pop value from stack
m Use as address for next instruction
m Like x86-64

Miscellaneous Instructions

nop 10

m Don’t do anything

halt 0|0

m Stop executing instructions

m X86-64 has comparable instruction, but can’t execute it
in user mode

m We will use it to stop the simulator

m Encoding ensures that program hitting memory
initialized to zero will halt

Introduction to Computer Systems, Peking University

Status Conditions
ITEEHEI NI = Normal operation
AOK 1

[T = Halt instruction encountered
HLT 2
m m Bad address (either instruction or data)
e encountered
ADR 3
[T = Invalid instruction encountered
INS 4

B Desired Behavior
m If AOK, keep going
m Otherwise, stop program execution

Introduction to Computer Systems, Peking University

Writing Y86-64 Code

B Try to Use C Compiler as Much as Possible
m Write codein C
m Compile for x86-64 with gcc -0Og -S
m Transliterate into Y86-64
m Modern compilers make this more difficult

B Coding Example

m Find number of elements in null-terminated list
int lenl (int afl]);
a —| 5043

6125
7395
0

= 3

Introduction to Computer Systems, Peking University

Y86-64 Code Generation Example

HFirst Try HProblem
m Write typical array code m Hard to do array indexing on
Y86-64
e Since don’t have scaled
/* Find number of elements in addressing modes
null-terminated list */ 3
L .
long len(long a :
() : g el addg $1,%rax
long len; cmpg $0, (%rdi,%rax,8)
for (len = 0; a[len]; len++) jne L3
return len;
}

m Compile with gcc -0Og -S

Introduction to Computer Systems, Peking University

Y86-64 Code Generation Example #2

ESecond Try HResult
m Write C code that mimics m Compiler generates exact
expected Y86-64 code same code as before!

m Compiler converts both
versions into same
intermediate form

long len2(long *a)
{
long ip = (long) a;
long val = *(long *) ip;
long len = 0;
while (val) {
ip += sizeof (long) ;
len++;
val = *(long *) ip;
}

return len;

Introduction to Computer Systems, Peking University

Y86-64 Code Generation Example #3

len:

irmovg $1, %r8
irmovqg $8, %r9
irmovqg $0, %rax
mrmovqg (%rdi), %Srdx
andqg %rdx, %rdx

je Done

Loop:

addg %r8, %rax

addg %r9, %rdi
mrmovqg (%rdi), %rdx
andqg %rdx, %rdx

jne Loop

Done:

ret

3H = H = H I

H H=H N

Constant 1
Constant 8

len = 0

val = *a

Test val

If zero, goto Done

len++
a++

val = *a
Test val

If '0, goto Loop

Register |Use

%rdi a
Y%rax len
Y%rdx val
%r8 1
%r9 8

Y86-64 Sample Program Structure #1

init: # Initialization
T m Program starts at
call Main address 0
halt
m Must set up stack
.align 8 # Program data ® Where located
array: e Pointer values
e Make sure don’t
overwrite code!
Main: # Main function L
m Must initialize data
call len
len: # Length function
.pos 0x100 # Placement of stack
Stack:

Y86-64 Program Structure #2

init:

Set up stack pointer m Program starts at

irmovq Stack, %rsp address 0
Execute main program

call Main m Must set up stack

Terminate m Must initialize data
halt :
2 = Can use symbolic
names

Array of 4 elements + terminating O
.align 8
Array:
.quad 0x000d4000d4000d000d
.quad 0x00c000c000c000cO
.quad 0x0b000b000b000bLO0
.quad 0xa000a000a000a000

.quad O

Y86-64 Program Structure #3

Main:
irmovq array, 3srdi
call len(array)
call len
ret

B Set up call to len
m Follow x86-64 procedure conventions
m Push array address as argument

Introduction to Computer Systems, Peking University

Assembling Y86-64 Program

unix> yas len.ys

m Generates “object code” file 1en.yo
e Actually looks like disassembler output

0x054:
0x054:
0x05e:
0x068:
0x072:
0x07c:
0x07e:
0x087:
0x087:
0x089:
0x08b:
0x095:
0x097:
0x0a0:
0x0a0:

30£80100000000000000
30£90800000000000000
30£00000000000000000
50270000000000000000
6222

73a000000000000000

6080

6097
50270000000000000000
6222
748700000000000000

90

len:
irmovg $1, %r8
irmovg $8, %r9
irmovg $0, %rax
mrmovqg (%rdi), %rdx
andg %rdx, S%rdx
je Done

Loop:
addg %r8, %rax
addg %r9, %rdi
mrmovqg (%rdi), %rdx
andg %rdx, %rdx
jne Loop

Done:
ret

H HHHH

3H H HH

Constant 1
Constant 8
len = 0
val = *a
Test wval
If zero, goto Done
len++

at++

val = *a

Test wval

If '0, goto Loop

Introduction to Computer Systems, Peking University

Simulating Y86-64 Program

unix> yis len.yo

m Instruction set simulator

e Computes effect of each instruction on processor state

® Prints changes in state from original

Changes to registers:
grax: 0x0000000000000000

¥rsp: 0x0000000000000000
Srdi: 0x0000000000000000
%r8: 0x0000000000000000
%r9: 0x0000000000000000

Changes to memory:
0x00£f0: 0x0000000000000000
0x00£8: 0x0000000000000000

Stopped in 33 steps at PC = 0x13. Status 'HLT', CC Z=1 S=0 0=0

0x0000000000000004
0x0000000000000100
0x0000000000000038
0x0000000000000001
0x0000000000000008

0x0000000000000053
0x0000000000000013

CISC Instruction Sets

m Complex Instruction Set Computer
m |A32 is example

B Stack-oriented instruction set
m Use stack to pass arguments, save program counter
m Explicit push and pop instructions

B Arithmetic instructions can access memory
m addg %rax, 12 (%rbx,%rcx,8)
® requires memory read and write
e Complex address calculation

B Condition codes
m Set as side effect of arithmetic and logical instructions

B Philosophy
m Add instructions to perform “typical” programming tasks

RISC Instruction Sets

m Reduced Instruction Set Computer

m Internal project at IBM, later popularized by Hennessy
(Stanford) and Patterson (Berkeley)

B Fewer, simpler instructions
m Might take more to get given task done
m Can execute them with small and fast hardware

B Register-oriented instruction set
m Many more (typically 32) registers
m Use for arguments, return pointer, temporaries

B Only load and store instructions can access memory
m Similar to Y86-64 mrmovqg and rmmovq

B No Condition codes
m Test instructions return 0/1 in register

Introduction to Computer Systems, Peking University

MIPS Registers

$0 $0 Constant 0 $16 $s0

$1 [$at | | Reserved Temp. $17 [$s1

$2 $v0 Return Values $18 $s2 Callee Save

$3 $vi | $19 | $s3 Temporaries:

$4 $a0 $20 | $s4 May nottbe .

overwritten by

35] $at Procedure arguments $21 | $s5 called procedures

$6 $a2 $22 $s6

$7 $a3 $23 | $s7

$8 $t0 $24 $t8 Caller Save Temp

$9 $t1 $25 | $t9

$10 | $t2 Caller Save $26 | $k0 | | Reserved for
Temporaries: Operating Sys

$11 $t3 May be overwritten by $27 3k1 -]

$12 | $t4 called procedures $28 | $gp | | Global Pointer

$13 | $t5 $29 | $sp Stack Pointer

$14 | $t6 $30 | $s8 | | Callee Save Temp

$15 | $t7 $31 | $ra | *| Return Address

MIPS Instruction Examples

R-R
Op Ra Rb Rd 00000 Fn
addu $3,$2,61 # Register add: $3 = $2+$1
R-I
Op Ra Rb Immediate

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2
Branch
Op Ra Rb Offset
beq $3,$2,dest # Branch when $3 = $2
Load/Store
Op Ra Rb Offset
lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Introduction to Computer Systems, Peking University

CISC vs. RISC

B Original Debate
m Strong opinions!
m CISC proponents---easy for compiler, fewer code bytes

m RISC proponents---better for optimizing compilers, can make
run fast with simple chip design

H Current Status

m For desktop processors, choice of ISA not a technical issue
e With enough hardware, can make anything run fast
e Code compatibility more important

m x86-64 adopted many RISC features
® More registers; use them for argument passing

m For embedded processors, RISC makes sense
e Smaller, cheaper, less power
® Most cell phones use ARM processor

Introduction to Computer Systems, Peking University

H Y86-64 Instruction Set Architecture

m Similar state and instructions as x86-64
m Simpler encodings
m Somewhere between CISC and RISC

B How Important is ISA Design?

m Less now than before
e With enough hardware, can make almost anything go fast

Introduction to Computer Systems, Peking University

Part B

Logic Design

Overview of Logic Design

B Fundamental Hardware Requirements

= Communication
e How to get values from one place to another

m Computation
m Storage

B Bits are Our Friends
m Everything expressed in terms of values 0 and 1

m Communication
e Low or high voltage on wire

m Computation
e Compute Boolean functions

m Storage
® Store bits of information

Introduction to Computer Systems, Peking University

Digital Signals

—0— }—1— o

Voltage

Time

m Use voltage thresholds to extract discrete values from
continuous signal

m Simplest version: 1-bit signal
e Either high range (1) or low range (0)
e With guard range between them

m Not strongly affected by noise or low quality circuit elements
e Can make circuits simple, small, and fast

Introduction to Computer Systems, Peking University

Computing with Logic Gates

Not

And Or
a — d
b _ — out bD out a—[>o-0Ut

out=a &«& b out=a || b out='a

m Outputs are Boolean functions of inputs

m Respond continuously to changes in inputs
e With some, small delay

Rising Delay Falling Delay
-« -« as&shb

Voltage

Time

Combinational Circuits

Acyclic Network
1 F Lo
) > 1 r Primary

Outputs
>0

Primary
Inputs

1

i

B Acyclic Network of Logic Gates
m Continously responds to changes on primary inputs

= Primary outputs become (after some delay) Boolean
functions of primary inputs

Introduction to Computer Systems, Peking University

Bit Equality

Bit equal

a .

Y

HCL Expression

) e

bool eq = (a&&b) || ('a&&!'b)

U U

m Generate 1 if a and b are equal

B Hardware Control Language (HCL)

m Very simple hardware description language
e Boolean operations have syntax similar to C logical operations

m We’'ll use it to describe control logic for processors

Introduction to Computer Systems, Peking University

Word Equality

Word-Level Representation

Pes Bit equal Pt > - | Eq
de3] -
De2 €62 A
Bit equal
dg2 — |

HCL Representation

o o
— Eq bool Eq = (A == B)
o o

b eq

Bit equal _ _
a; — m 64-bit word size
I N = HCL representation
ao neae e Equality operation

® Generates Boolean value

Introduction to Computer Systems, Peking University

Bit-Level Multiplexor

S * Bit MUX]
Y HCL Expression
bool out = (sé&&a) || (!'s&é&b)

— out

m Control signal s
m Data signals aand b
m Output a when s=1, b when s=0

Word Multiplexor

Y

-

Introduction to Computer Systems, Peking University

Word-Level Representation

MUX Out

Out63 A —

HCL Representation

int Out = |
Out62 S A;
1l : B;
1;

m Select input word A or B
depending on control signal s

m HCL representation
e Case expression
® Series of test : value pairs

e Output value for first
successful test

Outo

Introduction to Computer Systems, Peking University

HCL Word-Level Examples

Minimum of 3 Words

MIN3

H
DO —
D1 MUX4
D2—
D3—
—

Min3

— Qut4

int Min3 = [

A<B & ALK C : A;
B <A && B C : B;
1 : C;

17

int Outd = |

1s1&&!'s0: DO;
Isl : D1;
1s0 : D2;
1 : D3;

17

Find minimum of three
input words

HCL case expression

Final case guarantees
match

Select one of 4 inputs
based on two control
bits

HCL case expression
Simplify tests by
assuming sequential
matching

u u u u
Arithmetic Logic Unit

m Combinational logic
e Continuously responding to inputs

m Control signal selects function computed
e Corresponding to 4 arithmetic/logical operations in Y86-64

m Also computes values for condition codes

Introduction to Computer Systems, Peking University
Registers

Structure

7 — g Q+ 0-
Ig | o Q+ Og
i5 | o Q+ Os5
!4 | o Q+ 04 l—p —p O
I3 | o Q+ O3
i | g Q+ (o] I
Iy 2 o+ 04 Clock
.
i | o Q+ 0o

Clock

m Stores word of data
e Different from program registers seen in assembly code

m Collection of edge-triggered latches
m Loads input on rising edge of clock

Introduction to Computer Systems, Peking University

Register Operation

State = x State =y
Input=y | | Output =x = F:::(S)I;? = Output =y
DIX => _ =Y >

m Stores data bits

m For most of time acts as barrier between input and output
m As clock rises, loads input

Introduction to Computer Systems, Peking University

State Machine Example

Comb. Logic
0
m Accumulator
A circuit
L 0 Out m Load or
U MUX accumulate on
each cycle
In 1

Out Xo Xo+X1 | Xo+Xi+Xs X3 Xz4+X, | Xg+X4+X5

Introduction to Computer Systems, Peking University

Random-Access Memory

valA
SreA > A valWw
Read ports Register asw Write port
valB file —
srcB R =
Clock

m Stores multiple words of memory
® Address input specifies which word to read or write

m Register file
e Holds values of program registers

® 3%rax, 3rsp, etc.
® Register identifier serves as address
» ID 15 (OxF) implies no read or write performed

m Multiple Ports
e Can read and/or write multiple words in one cycle

» Each has separate address and data input/output

Introduction to Computer Systems, Peking University

Register File Timing

" B Reading
A 2| X m Like combinational logic
] Register m Output data generated based on
X ~yalt file input address
soB e After some delay
2 — B Writing
m Like register
m Update only as clock rises
2L valw . 2|y
Register , [—— Y Rising Register vaw
w

. dstW
file 2 2 clock > o dotw

Clock
Clock

Hardware Control Language

m Very simple hardware description language

m Can only express limited aspects of hardware operation
e Parts we want to explore and modify

B Data Types

m bool: Boolean
® a,b,c,...

m int:words
®ABC,...
® Does not specify word size---bytes, 64-bit words, ...

H Statements

B bool a = bool-expr ;

B int A = int-expr ;

Introduction to Computer Systems, Peking University

HCL Operations

m Classify by type of value returned

B Boolean Expressions

m Logic Operations
® a && b,a || b,'a
= Word Comparisons
@A == B,A != B,A< B,A<=B,A > B,A>B
m Set Membership
® Ain { B, C, D }
» Same as A == || A == || A ==

B Word Expressions

m Case expressions
® [a: A; b: B; ¢ : C]]
e Evaluate test expressions a, b, ¢, ... in sequence
® Return word expression A, B, C, ... for first successful test

Introduction to Computer Systems, Peking University

B Computation
m Performed by combinational logic
m Computes Boolean functions
m Continuously reacts to input changes

B Storage

m Registers
e Hold single words
® Loaded as clock rises

m Random-access memories
e Hold multiple words
® Possible multiple read or write ports
® Read word when address input changes
® Write word as clock rises

Introduction to Computer Systems, Peking University

Additional Slides

Introduction to Computer Systems, Peking University

Storing 1 Bit

Bistable Element

qQ+

Al

0.9 /
0.8 N /

N \ | v

0.5

0.4

0.3 / \\

0.1 //
0
0 01 02 03 04 05 06 07 08 09 1

Vin

Introduction to Computer Systems, Peking University

Storing 1 Bit (cont.)

Bistable Element

9

Q+
'T Q-
1 =0or1 Stable 1
1 ’)/
0.9 ,/
0.8 /
07 — Vin
0.6 — V2

™ -
/ |Metastable |

A

Stable 0 \.O e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Introduction to Computer Systems, Peking University

Physical Analogy _stable

— 2
0.9 //
0.8 /
o7 —\Vin
0.6 — V2
. ~ -
) / | Metastable B
/
0.1 //
Stable 0 — S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vin

Metastable

Stable left

<A

Stable right

A~

Introduction to Computer Systems, Peking University

Storing and Accessing 1 Bit

Bistable Element

R-S Latch
' o- —
Q S Q
q=0or1
Resetting Setting Storing

1

R 1 0 R 1 R s q
..— Q+ Q+ .I |- Q+
}] -1 % |
s O) >Pel—a st Q- 0 ’;. -

Introduction to Computer Systems, Peking University

1-Bit Latch

D Latch
D
Data I: R
Q+
-
Q-
C
Clock l— S
Latching Storing
d o 1d 'd '1d d d
— Q+
1 Q- 0

Introduction to Computer Systems, Peking University

Transparent 1-Bit Latch

Latching Changing D
d 1d 'd 'd d
> Cc
- Q+ \
e
1 Q-
d d 'd Q+ . U
Time

m When in latching mode, combinational propogation from D
to Q+ and Q-

m Value latched depends on value of D as C falls

Introduction to Computer Systems, Peking University

Edge-Triggered Latch

D
Data |> R
Q+
r
Q-
e [ty U)
Clock T
Trigger
c m Only in latching mode

for brief period
® Rising clock edge

m Value latched depends
on data as clock rises

_ = Output remains stable at
Time all other times

o
I
"]

