Introduction to Computer Systems, Peking University

Machine-Level Programming V:
Advanced Topics

Introduction to Computer Systems
8th Lecture, Oct. 09, 2025

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao

Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

Today

m Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

Introduction to Computer Systems, Peking University

Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i[2]; c
double v; i[0] i[1]

} *up;

struct S1 { up+0 up+4 up+8
char c¢;
int i[2];
double v;
} *sp;

c i[0] i[1] M
sp+0 sp+4 sp+8 sp+16 sp+24

Introduction to Computer Systems, Peking University

Using Union to Access Bit Patterns

typedef union {
float f£;
unsigned u;

} bit float t; 0 4

float bit2float (unsigned u) unsigned float2bit (float f)
{ {

bit float t arg; bit float t arg;
arg.u = u; arg.f = £;
return arg.f; return arg.u;

} }

Sameas (float) u? Same as (unsigned) f?

Introduction to Computer Systems, Peking University

Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which byte is most (least) significant?
= Can cause problems when exchanging binary data between machines
m Big Endian
" Most significant byte has lowest address
" Sparc, Internet

m Little Endian
= |Least significant byte has lowest address
" |ntel x86, ARM Android and IOS

m Bi Endian

= Can be configured either way
= ARM

Introduction to Computer Systems, Peking University

Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];
unsigned int i[2];
unsigned long 1[1];
} dw;

32-bit | €[0] | c[1] | c[2] | c[3] | c[4] | c[3] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]

1[0]

64-bit | €[0]1 | cl[1] | c[2] | c[3] | c[4] | c[3] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]

1[0]

Byte Ordering Example (Cont).

int j;
for (j = 0; j < 8; j++)
dw.c[j§] = Oxf0 + j;

printf ("Characters 0-7 ==

[0x%x,0x%$x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
dw.c[0], dw.c[1l], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf ("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
dw.s[0], dw.s[1l], dw.s[2], dw.s[3]) ;

printf ("Ints 0-1 == [0x%x,0x%x]\n",
dw.i[0], dw.i[1]);

printf ("Long 0 == [0x%1x]\n",
dw.1[0]) ;

Introduction to Computer Systems, Peking University

Byte Ordering on 1A32

Little Endian
£0 £1 £2 £3 f4 £5 £6 £7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] |c[6] |c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]
LSB MSB LSB MSB
) Print
Output:
Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7£6]
Ints 0-1 == [0xf3f2f1£f0,0xf7£6£5£f4]
Long 0 == [0xf3f2f1£0]

Byte Ordering on Sun

Big Endian
£0 £l £2 £3 f4 £5 £6 £7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] |c[6] |c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]
MSB R LSB MSB LSB

Print

Output on Sun:

Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]

Shorts 0-3 == [0xf0fl1l,0x£f2£f3,0x£f4£f5,0x£6£7]
Ints 0-1 == [Oxf0f1£f2£f3,0x£f4£5£f6£7]
Long 0 == [O0xf0£f1£2£f3]

Byte Ordering on x86-64

Little Endian
£f0 fl £2 £3 f4 £5 f6 £7
c[0] | c[1l] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]
LSB MSB

Introduction to Computer Systems, Peking University

-
«

Print

Output on x86-64.

Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0xf6,0x£f7]
Shorts 0-3 == [0xf1lf0,0x£f3f2,0x£f5f4,0x£f7£6]

Ints 0-1 == [Oxf3f2f1£f0,0xf7£f6£5£4]

Long 0) == [0xf7£f6£5f4£3£2£f1£f0]

10

Introduction to Computer Systems, Peking University

Summary of Compound Types in C

m Arrays
= Contiguous allocation of memory
= Aligned to satisfy every element’s alignment requirement
= Pointer to first element
= No bounds checking

m Structures
= Allocate bytes in order declared
= Pad in middle and at end to satisfy alignment

m Unions
= Qverlay declarations
= Way to circumvent type system

11

Introduction to Computer Systems, Peking University

Today

m Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

12

Introduction to Computer Systems, Peking University

not drawn to scale

x86-64 Linux Memory Layout

(2*7 — 4096 =) 0000 7FFF FFFF FO00 [PAeeZezzzzzzzzza

| randomized
m Stack - 128
SMB{W%rSP_ >MB
= Runtime stack (8MB limit)
= e.g., local variables 0000 7FFF F800 0000 =% g
! randomized
u Heap Shared
= Dynamically allocated as needed Libraries
" When call malloc(), calloc (), new() |
m Data
= Statically allocated data
= e.g., global vars, static vars, string constants
m Text / Shared Libraries t
" Executable machine instructions Heap
= Read-only Data
Text
Hex Address 400000
1000

0000 13

Introduction to Computer Systems, Peking University

not drawn to scale

Memory Allocation Example

0000 7FFF FFFF FO00

| randomized
char big array[lL<<24]; /* 16 MB */ Y
char huge array[1L<<31]; /* 2 GB */ Stack
s glObal = 0; “randomized
int useless() { return 0; } Shared
Libraries
int main ()
{ \4
void *phugel, *psmall2, *phuge3, *psmall4;
int local = 0;
phugel = malloc(1lL << 28); /* 256 MB */
psmall2 = malloc(lL << 8); /* 256 B */
phuge3 = malloc (1L << 32),; /* 4 GB */ t
psmall4 = malloc(lL << 8); /* 256 B */ Heap
/* Some print statements ... */
} Data
400000 Text
Where does everything go?

14

Introduction to Computer Systems, Peking University

not drawn to scale

x86-64 Example Addresses

0000 7FFF FFFF FO00

address range ~247 randomized
Stack
randomized
local 0x00007£fedd3be8Tc / Sl
phugel 0x00007£7262ale010 HIETE TS
phuge3 0x00007£7162a1d010] I
psmalld 0x000000008359d120 AELLE B]REE
psmall2 0x000000008359d010
big array 0x0000000080601060 M
huge array 0x0000000000601060
main () 0x000000000040060c 4
useless () 0x0000000000400590
Heap
(Exact values can vary)
Data
Text
400000

15

Runaway Stack Example

Introduction to Computer Systems, Peking University

not drawn to scale

int recurse(int x) {
int a[l<<15]; // 4*2~15 =
printf ("x = %d.

128 KiB)
a at %p\n", x, a);

%rsp =

a[0] = (1<<14)-1; Stack
a[a[0]] = x-1; v
if (a[a[0]] == 0) 7
return -1;
return recurse(a[a[0]]) - 1;
}
m Functions store local data in Jisstesy (57
Xx = 67. a at 0x7££d4d18abad930
StaCk frame X = 66. a at 0x7££d418a%a920
m Recursive functions cause deep | X Z & 2 & XTI
nesting of frames :
x = 4. a at 0x7££d4182da540
What happens When we run x = 3. a at 0x7££d4d182ba530
X = 2. a at 0x7££41829a520
out of space? Segmentation fault (core dumped)

> 8MB

16

Introduction to Computer Systems, Peking University

Today

m Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

17

Introduction to Computer Systems, Peking University

Recall: Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) -> 3.1400000000
fun(l) -> 3.1400000000
fun(2) -> 3.1399998665
fun(3) -> 2.0000006104
fun(6) -> Stack smashing detected
fun(8) -> Segmentation fault

= Result is system specific

18

Introduction to Computer Systems, Peking University

Memory Referencing Bug Example

typedef struct { fun(0) -> 3.1400000000
int a[2]; fun(l) -> 3.1400000000
double d; fun(2) -> 3.1399998665
j EeatiEs 19 fun(3) -> 2.0000006104

fun(4) -> Segmentation fault
fun(8) -> 3.1400000000

] ?7?7? 8)
Explanatlon: Critical State 7
Critical State 6
Critical State 5
Critical State 4 >
g d7 ... d4 | 3 Location accessed by
43 ... do |2 fun (1)
struct t =
- al[l] 1
_ al[0] 0 y,

19

Such problems are a BIG deal

m Generally called a “buffer overflow”
= when exceeding the memory size allocated for an array
m Why a big deal?
" |t’s the #1 technical cause of security vulnerabilities
= #1 overall cause is social engineering / user ignorance
m Most common form
"= Unchecked lengths on string inputs

= Particularly for bounded character arrays on the stack
= sometimes referred to as stack smashing

20

[] []
String Library Code

m Implementation of Unix function gets ()

/* Get string from stdin */
char *gets(char *dest)
{
int c¢c = getchar();
char *p = dest;
while (c '= EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0";
return dest;
}

= No way to specify limit on number of characters to read

m Similar problems with other library functions
" strcpy, strcat: Copy strings of arbitrary length

= scanf, £fscanf, sscanf, when given $s conversion specification
21

Introduction to Computer Systems, Peking University

Vulnerable Buffer Code

/* Echo Line */
void echo()

{

char buf[4]; /* Way too small! */ & btw. how blg
gets (buf) ; ’.)
puts (buf) ; is big enough?

}

void call echo() {
echo () ;

}

unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

unix>./bufdemo-nsp
Type a string:012345678901234567890123

012345678901234567890123
Segmentation Fault

22

Buffer Overflow Disassembly

Introduction to Computer Systems, Peking University

echo:
00000000004006cf <echo>:
4006cf: 48 83 ec 18 sub $0x18,%rsp
4006d3: 48 89 e7 mov $rsp, srdi
4006d6: e8 a5 ff ff ff callg 400680 <gets>
4006db: 48 89 e7 mov $rsp,srdi
4006de: e8 3d fe ff ff callg 400520 <puts@plt>
4006e3: 48 83 c4 18 add $0x18,%rsp
4006e7: «c3 retq
call_echo:
4006e8: 48 83 ec 08 sub $0x8,%rsp
4006ec: b8 00 00 00 0O mov $0x0, $eax
4006f1: e8 d9 ff ff ff callg 4006cf <echo>
4006f6: 48 83 c4 08 add $0x8,%rsp

4006fa: c3

retq

23

Buffer Overflow Stack

Before call to gets

Stack Frame
forcall echo

/* Echo Line */
Return Address void echo ()
(8 bytes) {

char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

20 bytes unused }

[SI|[2]|[1]}[0]| buf «— %rsp

echo:
subg $24, %rsp
movqg 3rsp, %rdi
call gets

24

Introduction to Computer Systems, Peking University

Buffer Overflow Stack Example

Before call to gets

void echo() echo:

Stack Frame { subg $24, %rsp

forcall_eCho char buf[4]; movqg $%rsp, %rdi
gets (buf) ; call gets
0010000} 0O0 }
00|40 06| £6
call_echo:
20 bytes unused 4006f1: callg 4006cf <echo>

4006£f6: add $0x8,%rsp

[SI|[2]|[1]}[0]| buf «— %rsp

25

Introduction to Computer Systems, Peking University

Buffer Overflow Stack Example #1

After call to gets

Stack Frame

forcall echo

00]00|00

00

00|40 06

fé

00|32]|31

30

39|38|37

36

35|34|33

32

31|30|39

38

37|36|35

34

33|32|31

30

void echo()

{

echo:

subg $24, %rsp

char buf([4]; movqg 3rsp, %rdi
gets (buf) ; call gets
}
call_echo:
4006f1: callg 4006cf <echo>
4006f6: add $0x8, $rsp

buf «— %rsp

unix>. /bufdemo-nsp

Type a string:01234567890123456789012
01234567890123456789012

“01234567890123456789012\0”

Overflowed buffer, but did not corrupt state

Introduction to Computer Systems, Peking University

Buffer Overflow Stack Example #2

After call to gets

Stack Frame

forcall echo

00]00|00

00

00| 40|06

00

33|32|31

30

39|38|37

36

35|34|33

32

31|30|39

38

37|36|35

34

33|32|31

30

void echo()

{
char buf[4];
gets (buf) ;

echo:

subg $24, %rsp

movq S3rsp,
call gets

$rdi

call_echo:

4006f6: add

$0x8,%rsp

4006f1: callg 4006cf <echo>

buf «— %rsp

unix>. /bufdemo-nsp

Type a string:012345678901234567890123

012345678901234567890123
Segmentation fault

Program “returned” to 0x0400600, and then crashed.

27

Stack Smashing Attacks

void P () { Stack after call to gets ()

Q() return N\
<+— address

}... :
>

P stack frame

int Q() {

char buf[64]; arex:

gets (buf) ; <

return ...: data written <
} by gets () pad

- > Q stack frame
void S () {

/* Something
unexpected */

}
m Overwrite normal return address A with address of some other code S
m When Q executes ret, will jump to other code

28

Crafting Smashing String

int echo () {
Stack Frame char buf[4];
for call echo gets (buf) ;
oo|oo]oo]oo
00]48|83]80 return ...;
00j00100]00 }
00]40)06| fb %—%rsp Target Code
void smash () {
printf ("I've been smashed!\n") ;
> 24 bytes exit (0);
}
J 00000000004006fb <smash>:
4006fb: 48 83 ec 08

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
fb 06 40 00 00 00 00 0O

29

Smashing String Effect

Stack Frame
forcall echo

ooloofoofoo
ool48]83]80
([oolooloo]oo0

00|40 06| £fb
331323130

< 39|38|37]|36
35|34|33|32

+—3rsp Target Code

void smash () {
printf ("I've been smashed!\n");

exit (0) ;
31|30(|39]38 }
371363534
[33]3231)30 00000000004006fb <smash>:
4006£b: 48 83 ec 08
Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
fb 06 40 00 00 00 00 0O

30

Introduction to Computer Systems, Peking University

Performing Stack Smash

linux> cat smash-hex. txt

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 c8 06 40 00 00 00 00 00
linux> cat smash-hex.txt | ./hexify | ./bufdemo-nsp

Type a string:0123456789012345678901237@

I've been smashed!

m Put hex sequence in file smash-hex.txt

m Use hexify program to convert hex digits to characters
= Some of them are non-printing

m Provide as input to vulnerable program

void smash() {
printf ("I've been smashed!\n") ;
exit (0) ;

}

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
c8 06 40 00 00 00 00 OO

31

Introduction to Computer Systems, Peking University

Code Injection Attacks

Stack after call to gets ()

\
void P() { P stack frame
Q(); return >
... <+<—— address
} A (B <
int Q() { data written pad
char buf[64] ; by gets ()
ets (buf) ;
. exploit > Q stack frame
return ... ; B —< I
}
J

Input string contains byte representation of executable code
Overwrite return address A with address of buffer B

When Q executes ret, will jump to exploit code
32

How Does The Attack Code Execute?

rip —| Stack
rsp —
void P() { rsp >
Q(); 18
rsp —
} pad
ri >
ret ret P exploit
int Q() { Shared] | code
char buf[64]; Libraries fip .
gets (buf); // A->B
return ...;
} Heap

Data
B =3 Text

33

Introduction to Computer Systems, Peking University

Exploits Based on Buffer Overflows

m Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines
m Distressingly common in real progams
" Programmers keep making the same mistakes ®

= Recent measures make these attacks much more difficult

m Examples across the decades
= QOriginal “Internet worm” (1988)
= “IM wars” (1999)
= Twilight hack on Wii (2000s)
= _..and many, many more
m You will learn some of the tricks in attacklab

= Hopefully to convince you to never leave such holes in your programs!!

34

Example: the original Internet worm (1988)

m Exploited a few vulnerabilities to spread

= Early versions of the finger server (fingerd) used gets () to read the
argument sent by the client:

» finger droh@cs.cmu.edu
= Worm attacked fingerd server by sending phony argument:
= finger “exploit-code padding new-return-
address”
= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.
m Once on a machine, scanned for other machines to attack
= invaded ~6000 computers in hours (10% of the Internet ©)
= see June 1989 article in Comm. of the ACM
= the young author of the worm was prosecuted...
= and CERT was formed... still homed at CMU

35

Introduction to Computer Systems, Peking University

Example 2: IM War

m July, 1999

= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

36

Introduction to Computer Systems, Peking University

IM War (cont.)

m August 1999

= Mysteriously, Messenger clients can no longer access AIM servers

" Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes
= At least 13 such skirmishes

= What was really happening?
= AOL had discovered a buffer overflow bug in their own AIM clients

= They exploited it to detect and block Microsoft: the exploit code
returned a 4-byte signature (the bytes at some location in the AIM
client) to server

= When Microsoft changed code to match signature, AOL changed
signature location

37

Introduction to Computer Systems, Peking University

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experilence 1n this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

Tt appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting theilr own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,

thil Buckin It was later determined that this
g
Founder, Bucking Consulting email originated from within

philbucking@yahoo.com .
Microsoft!

38

Introduction to Computer Systems, Peking University

Aside: Worms and Viruses

m Worm: A program that
= Canrun by itself
= Can propagate a fully working version of itself to other computers

m Virus: Code that

= Adds itself to other programs
= Does not run independently

m Both are (usually) designed to spread among computers
and to wreak havoc

39

Introduction to Computer Systems, Peking University

what to do about buffer overflow attacks

m Avoid overflow vulnerabilities
m Employ system-level protections

m Have compiler use “stack canaries”

m Lets talk about each...

40

Introduction to Computer Systems, Peking University

1. Avoid Overflow Vulnerabilities in Code (!)

/* Echo Line */

void echo ()

{
char buf[4]; /* Way too small! */
fgets (buf, 4, stdin);
puts (buf) ;

}

m For example, use library routines that limit string lengths
= fgetsinstead of gets
= strncpy instead of strcpy
= Don’t use scanf with $s conversion specification
= Use £gets to read the string
= Oruse $ns where n is a suitable integer

41

Introduction to Computer Systems, Peking University

2. System-Level Protections can help

m Randomized stack offsets Stack base
p
= At start of program, allocate
random amount of space on
Random
stack)
allocation
m Shifts stack addresses for entire
program .
= Makes it difficult for hacker to Halh
predict beginning of inserted Application
code Code
= E.g.: 5 executions of memory
allocation code B?
local Ox7ffedd3be87c Ox7fff75a4f9fc Ox7ffeadb7c80c Ox7ffeaea2fdac 0x7ffcd452017c pad
= Stack repositioned each time exploit
program executes B2 Tarle

42

Introduction to Computer Systems, Peking University

2. System-Level Protections can help

Stack after call to gets ()
m Nonexecutable code \

segments

" |n traditional x86, can mark >
region of memory as either
“read-only” or “writeable” ar

P stack frame

= Can execute anything <
readable data written { pad

= X86-64 added explicit by gets ()

“execute” permission exploit > Q stack frame
code

= Stack marked as non- B —
executable

Any attempt to execute this code will fail

43

Introduction to Computer Systems, Peking University

3. Stack Canaries can help

m ldea

= Place special value (“canary”) on stack just beyond buffer
® Check for corruption before exiting function
m GCCImplementation
" -fstack-protector
= Now the default (disabled earlier)

unix>. /bufdemo-sp

Type a string:0123456
0123456

unix>./bufdemo-sp
Type a string:01234567
*** stack smashing detected ***

44

Introduction to Computer Systems, Peking University

Protected Buffer Disassembly

echo: Aside: $fs:0x28
40072f: sub $0x18 , BLSP ° Read from memory using
400733: mov %$fs:0x28, %rax .
40073c: mov $rax,0x8 (%rsp) SegmentEd addressmg
400741: =xor %eax, $eax * Segment is read-only
400743: mov %rsp,%rdi * Value generated randomly
400746: callg 4006e0 <gets> -
40074b: mov srsp,srdi every time program runs
40074e: callg 400570 <puts@plt>
400753: mov 0x8 (%rsp) , Srax
400758: xor $fs:0x28,%rax
400761: je 400768 <echo+0x39>
400763: callg 400580 < stack chk fail@plt>
400768: add $0x18,%rsp
40076c: retq

45

Introduction to Computer Systems, Peking University

Setting Up Canary

Before call to gets

/* Echo Line */
Stack Frame GeREl e)
forcall echo {
char buf[4]; /* Way too small! */
gets (buf) ;
Return Address puts (buf) ;
(8 bytes) }
Canary
(8 bytes)
[31|1[2]1][1]|[0]]| buf «— %rsp

echo:
movqg $fs:40, %$rax # Get canary
movq $rax, 8 (%rsp) # Place on stack

xorl %eax, %eax # Erase canary

46

Introduction to Computer Systems, Peking University

Checking Canary

After call to gets
/* Echo Line */
Stack Frame sl s ()
forcall echo {
char buf[4]; /* Way too small! */
gets (buf) ;
Return Address puts (buf) ;
(8 bytes) }
Canary Input: 0123456
(8 bytes)
00| 36| 35| 34
33|32 31|30 | buf «—%rsp

echo:
movq 8 ($rsp), %rax # Retrieve from stack
xorq $£fs:40, %rax # Compare to canary
je .L6 # If same, OK
call __stack chk fail # FAIL

.L6:

Introduction to Computer Systems, Peking University

Return-Oriented Programming Attacks

m Challenge (for hackers)

= Stack randomization makes it hard to predict buffer location
= Marking stack nonexecutable makes it hard to insert binary code

m Alternative Strategy
= Use existing code
= E.g., library code from stdlib

= String together fragments to achieve overall desired outcome
= Does not overcome stack canaries

m Construct program from gadgets
= Sequence of instructions ending in ret
= Encoded by single byte O0xc3

® Code positions fixed from run to run
= Code is executable

48

Introduction to Computer Systems, Peking University

Gadget Example #1

long ab_plus c
(long a, long b, long c)
{

return a*b + c;

}

00000000004004d0 <ab plus c>:
4004d0: 48 0f af fe imul %rsi,%rdi
4004d4: | 48 8d 04 17 | lea (%rdi,%rdx,1l),%rax
4004d8: | c3 retq

rax € rdi + rdx

Gadget address = 0x4004d4

m Use tail end of existing functions

49

Introduction to Computer Systems, Peking University

Gadget Example #2

void setval (unsigned *p) ({
*p = 3347663060u;

}

/ Encodesmovqg %rax, %$rdi

<setwval>:
4004d9: c7 07 d4] 48 89 c7] movl $0xc78948d4, (%$rdi)

4004df: retqg

\ rdi € rax

Gadget address = 0x4004dc

m Repurpose byte codes

50

Introduction to Computer Systems, Peking University

ROP Execution

Stack

/) Gadget n code .

$rsp —>

o
—p Gadget 2 code
~— |
|
\> Gadget 1 code .

m Trigger with ret instruction
= Will start executing Gadget 1

m Final ret in each gadget will start next one

Shacham, H. (October 2007). "The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86)". Proceedings of the 14th ACM conference on

Computer and communications security - CCS '07. pp. 552-561. ISBN 978-1-59593-703-
2. doi:10.1145/1315245.1315313

51

Introduction to Computer Systems, Peking University

Crafting an ROP Attack String

Stack Frame
forcall echo

(Toolooloo[oo0

004004 [dc m Gadget #1
00|lo00]00]|00 = 0x4004d4 rax €< rdi+ rdx
gg :g g: ‘;g D m Gadget #2

< 39|38|371]36 " 0x4004dc rdiérax
35|34]33]32 m Combination
31]30)39)38 rdi € rdi + rdx

37|36| 35|34
[33]32|31]30|buf

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
d4 04 40 00 00 00 00 00 dc 04 40 00 00 00 00 0O

Multiple gadgets will corrupt stack upwards
52

Introduction to Computer Systems, Peking University

What Happens When echo Returns?

Stack Frame
forcall echo

(Tooloo[oolo0
00|40 04]adc

Echo executes ret

=

00]00]0O0]0O0 u Starts Gadget #1
00J40f04]d4]|——s, s
5rSP 2. Gadget #1 executes r
< 3313231130 g et
39138137136 = Starts Gadget #2
35[34[33]32 3. Gadget #2 executes ret
31|130|39]38 = Goes off somewhere ...

37|36| 35|34
[33]32|31]30|buf

Multiple gadgets will corrupt stack upwards
53

	幻灯片 1: Machine-Level Programming V: Advanced Topics Introduction to Computer Systems 8th Lecture, Oct. 09, 2025
	幻灯片 2: Today
	幻灯片 3: Union Allocation
	幻灯片 4: Using Union to Access Bit Patterns
	幻灯片 5: Byte Ordering Revisited
	幻灯片 6: Byte Ordering Example
	幻灯片 7: Byte Ordering Example (Cont).
	幻灯片 8: Byte Ordering on IA32
	幻灯片 9: Byte Ordering on Sun
	幻灯片 10: Byte Ordering on x86-64
	幻灯片 11: Summary of Compound Types in C
	幻灯片 12: Today
	幻灯片 13: x86-64 Linux Memory Layout
	幻灯片 14: Memory Allocation Example
	幻灯片 15: x86-64 Example Addresses
	幻灯片 16: Runaway Stack Example
	幻灯片 17: Today
	幻灯片 18: Recall: Memory Referencing Bug Example
	幻灯片 19: Memory Referencing Bug Example
	幻灯片 20: Such problems are a BIG deal
	幻灯片 21: String Library Code
	幻灯片 22: Vulnerable Buffer Code
	幻灯片 23: Buffer Overflow Disassembly
	幻灯片 24: Buffer Overflow Stack
	幻灯片 25: Buffer Overflow Stack Example
	幻灯片 26: Buffer Overflow Stack Example #1
	幻灯片 27: Buffer Overflow Stack Example #2
	幻灯片 28: Stack Smashing Attacks
	幻灯片 29: Crafting Smashing String
	幻灯片 30: Smashing String Effect
	幻灯片 31: Performing Stack Smash
	幻灯片 32: Code Injection Attacks
	幻灯片 33: How Does The Attack Code Execute?
	幻灯片 34: Exploits Based on Buffer Overflows
	幻灯片 35: Example: the original Internet worm (1988)
	幻灯片 36: Example 2: IM War
	幻灯片 37: IM War (cont.)
	幻灯片 38
	幻灯片 39: Aside: Worms and Viruses
	幻灯片 40: what to do about buffer overflow attacks
	幻灯片 41: 1. Avoid Overflow Vulnerabilities in Code (!)
	幻灯片 42: 2. System-Level Protections can help
	幻灯片 43: 2. System-Level Protections can help
	幻灯片 44: 3. Stack Canaries can help
	幻灯片 45: Protected Buffer Disassembly
	幻灯片 46: Setting Up Canary
	幻灯片 47: Checking Canary
	幻灯片 48: Return-Oriented Programming Attacks
	幻灯片 49: Gadget Example #1
	幻灯片 50: Gadget Example #2
	幻灯片 51: ROP Execution
	幻灯片 52: Crafting an ROP Attack String
	幻灯片 53: What Happens When echo Returns?

