Introduction to Computer Systems, Peking University

Machine-Level Programming |: Basics

Introduction to Computer Systems
4th L ecture, Sep. 18, 2025

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao

Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

Introduction to Computer Systems, Peking University

Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on
= Now 3 volumes, about 5,000 pages of documentation

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

= In terms of speed. Less so for low power.

Introduction to Computer Systems, Peking University

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

" First 32 bit Intel processor , referred to as I1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
" First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3333
® First multi-core Intel processor

m Corei7 2008 731M 1600-4400

® Four cores

Introduction to Computer Systems, Peking University

Intel x86 Processors, cont.

m Machine Evolution

. 386 1985 VB 'ntegratedMemory Controller.-:3:Ch DDR3:
= Pentium 1993 3.1M | "
" Pentium/MMX 1997 Mo Core 0 Core Core2 - Core3

" Pentium Pro 1995 6.5M

" Pentium 4 2000 42M Y

" Core 2 Duo 2006 291M Q A

= Corei7 2008 731M |l Shared L3 Cache

= Corei7 Skylake 2015 1.9B

= Xeon Skylake-SP 2017 8B

m Added Features
" |nstructions to support multimedia operations
" |nstructions to enable more efficient conditional operations
= Transition from 32 bits to 64 bits
" More cores

Intel x86 Processors, cont.

m Past Generations Process technology
= 1st Pentium Pro 1995 600 nm
= 1st Pentium lll 1999 250 nm
= 1t Pentium4 2000 180 nm
= 1t Core 2 Duo 2006 65 nm Process technology dimension

= width of narrowest wires

= Recent & Upcoming Generations (10 nm = 100 atoms wide)

1. Nehalem 2008 45 nm
2. Sandy Bridge 2011 32 nm
3. vy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
/. Kaby Lake 2016 14 nm
8. Coffee Lake 2017 14 nm
9. Cannon Lake 2018 10 nm
10. Ice Lake 2019 10 nm

11. Tiger Lake 2020 10 nm

Introduction to Computer Systems, Peking University

2018 State of the Art Coffee Lake

SR 1 ;,Bﬁllipg / ‘llfgn“terﬂg‘gn;pee%‘ﬁ‘”&j R

Core I Core -

m Mobile Model: Core i7 m Server Model: Xeon E
= 2.2-3.2 GHz " |ntegrated graphics
= 45W m Desktop Model: Core i7 = Multi-socket enabled
= Integrated graphics " 3.3-3.8 GHz
= 2.4-4.0 GHz " 80-95 W

= 35-95 W

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recent Years

" Intel got its act together
= 1995-2011: Lead semiconductor “fab” in world
= 2018: #2 largest by SS (#1 is Samsung)
= 2019: reclaimed #1

= AMD fell behind
= Relies on external semiconductor manufacturer GlobalFoundaries
= ca. 2019 CPUs (e.g., Ryzen) are competitive again

Introduction to Computer Systems, Peking University

Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to I1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing
m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Introduction to Computer Systems, Peking University

Our Coverage

m IA32
" The traditional x86
® For this course: RIP, Fall 2016

m X36-64

" The standard
" Server> gcc hello.c

" Server> gcc —-m64 hello.c

m Presentation

= Book covers x86-64
= Web aside on 1A32

= We will only cover x86-64

10

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

1"

Introduction to Computer Systems, Peking University

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing correct machine/assembly code

= Examples: instruction set specification, registers

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Microarchitecture: Implementation of the architecture

= Examples: cache sizes and core frequency

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones
= RISCV: New open-source ISA

12

Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

- Address of next instruction * Byte addressable array
= Called “RIP” (x86-64) » Code and user data

= Register file = Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching 13

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gce -Og pl.c p2.c -o p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)

14

Introduction to Computer Systems, Peking University

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg $rbx
void sumstore(long x, long vy, movq rdx, 3%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y):; popda $rbx
*dest = t; ret
}

Obtain (on our server machine) with command
gcec -Og —-S sum.c
Produces file sum. s

Warning: Will get very different results on our server
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

15

[] []
What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_startproc
pushg 3%rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq srdx, 3%rbx
call plus
movq $rax, (%rbx)
popa srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:
.size sumstore, .-sumstore

16

Introduction to Computer Systems, Peking University

What it really looks like

Things that look weird
and are preceded by a *’
sumstore: are generally directives.

pushg 3%rbx

sumstore:
pushq $rbx
o
movq srdx, %rbx movq srdx, %rbx
call plus
call plus -)
movq srax, (%rbx)
movq $rax, (%rbx) .
pPoprg $rbx
pPoprPgq $rbx ret

ret

17

Introduction to Computer Systems, Peking University

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)

m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

18

Assembly Characteristics: Operations

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches
" Indirect branches

19

Introduction to Computer Systems, Peking University

Object Code

Code for sumstore
m Assembler

Oxogzggg& " Translates .s into .o
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
gzzg = Missing linkages between code in different
Oxf2 files
Oxff m Linker
g:i: = Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction

0x03 1, 3, or 5 bytes

Ox5b e Starts at address

Oxc3 0x0400595 = Linking occurs when program begins
execution

= E.g., code formalloc, printf
= Some libraries are dynamically linked

20

Introduction to Computer Systems, Peking University

Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly

" Move 8-byte value to memory

movq %rax, (%rbx)

= Quad words in x86-64 parlance
= Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
= Stored at address 0x40059e

0x40059%9e: 48 89 03

21

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%$rbx)
4005al1l: 5b pop $rbx
4005a2: «c3 retqg

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
= Can be run on either a.out (complete executable) or . o file

22

Introduction to Computer Systems, Peking University

Alternate Disassembly
Disassembled

Object
0x0400595:
0x53 Dump of assembler code for function sumstore:
0x48 0x0000000000400595 <+0>: push $rbx
0x89 0x0000000000400596 <+1>: mov $rdx, $rbx
0xd3 0x0000000000400599 <+4>: callg 0x400590 <plus>
Oxe8 0x000000000040059%e <+9>: mov $rax, ($rbx)
Ox£2 0x00000000004005al1 <+12>:pop $rbx
Oxff 0x00000000004005a2 <+13>:retqg
Oxff
Oxff
0x48 m Within gdb Debugger
0x89
0z03 gdb sum
0x5b disassemble sumstore
Oxc3 = Disassemble procedure

x/14xb sumstore
= Examine the 14 bytes starting at sumstore

23

Introduction to Computer Systems, Peking University

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD .EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:

30001000:

30001001: _ _ _

30001003 : .Reverse engmeerlr.\g forbidden by
30001005 Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code

m Disassembler examines bytes and reconstructs assembly source

24

Introduction to Computer Systems, Peking University

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

25

x86-64 Integer Registers

srax %eax
$rbx %ebx
Ircx %ecx
$rdx Sedx
3rsi %esi
srdi $edi
srsp %esp
srbp %ebp

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

%$r8 %$r8d

%$r9 %r9d

%rl0 $rl10d
srll $rlld
%rl2 srl2d
%rl3 $rl3d
srl4 srldd
$rl5 $rl15d

Introduction to Computer Systems, Peking University

26

Introduction to Computer Systems, Peking University

Some History: IA32 Registers Origin

(mostly obsolete)

-
$eax $ax $ah gal accumulate
$ecx cx %ch 2cl counter
2
§ $edx $dx ¢dh 2dl data
2 <
©
o $ebx sbx sbh bl base
o
o Qesi %si source

© index

. o 1= destination

_ $Sedi $di e
o o stack
°eSP 15 pointer

base
S
oebp “bp pointer
\)
Y

16-bit virtual registers

(backwards compatibility) 27

Introduction to Computer Systems, Peking University

Moving Data srax
m Moving Data SrcCX
movq Source, Dest: srdx
o
m Operand Types srbx
" |mmediate: Constant integer data srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with '$ Srsp
= Encoded with 1, 2, or 4 bytes
: : . srbp
= Register: One of 16 integer registers
= Example: $rax, %$rl3
P SrN

= But $rsp reserved for special use

= Others have special uses for particular instructions
= Memory: 8 consecutive bytes of memory at address given by register

= Simplest example: ($rax) :
Warning: Intel docs use

= Various other “address modes”
mov Dest, Source

28

Introduction to Computer Systems, Peking University

movq Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movg $-147, (%$rax) *p = -147;

% ,srd t 2 = t 1;
movq < Reg {Reg movq %rax, $rdx emp emp

Mem movg %rax, ($rdx) *p = temp;

N Mem Reg movg (%rax),%rdx temp = *p;

Cannot do memory-memory transfer with a single instruction

29

Introduction to Computer Systems, Peking University

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

30

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)

{ swap:
long t0 = *xp; movq (%rdi) , %rax
long t1 = *yp; movq %rsi), %rdx
*xp = tl; movq $rdx, (%rdi)
*yp = tO0; movq %$rax, (%rsi)

} ret

3

Introduction to Computer Systems, Peking University

Understanding Swap()

Memory
void swap Registers
(long *xp, long *yp)
{ $rdi (
long t0 = *xp; S s
long t1 = *yp; °ret
*xp = tl; $rax
*yp = tO0;
} Srdx
Register Value
$rdi Xp
srsi YP swap:
srax t0 movq (%rdi) , %rax # t0 = *xp
Srdx tl movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

32

Understanding Swap()

] Memory
Registers Address
123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
srax 0x108
$rdx 456 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

3

Introduction to Computer Systems, Peking University

Understanding Swap()

] Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 0x108
$rdx 456 | 0x100
swap:
movq $rdi), %Srax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

34

Understanding Swap()

] Memory
Registers Address
: 123 | 0x120
Srdi 0x120
0x118
$rsi| 0x100
0x110
$rdx 456 |€ 456 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movq $rsi), %$rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

35

Introduction to Computer Systems, Peking University

Understanding Swap()

] Memory
Registers Address
: 456 | 0x120
Srdi 0x120
0x118
$rsi| 0x100
0x110
$rdx 456 456 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

36

Introduction to Computer Systems, Peking University

Understanding Swap()

] Memory
Reg Isters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 \ OX108
$rdx 456 123 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

37

Introduction to Computer Systems, Peking University

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

38

Complete Memory Addressing Modes

m Most General Form
D(Rb,Rj,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers

= Ri: Index register: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

39

Introduction to Computer Systems, P&dmgdiaiteltoity

Address Computation Examples

$rdx O0xf000

$rcx 0x0100

Expression Address Computation Address

0x8 (%rdx) 0xf000 + 0x8 0x£008
$rdx, $rcx) 0x£f000 + 0x100 0x£100

$rdx, $rcx,4) 0xf000 + 4*0x100 |0xf400

0x80 (, %rdx, 2) 2*0x£f000 + 0x80 |0x1e080

40

Introduction to Computer Systems, Peking University

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

41

Introduction to Computer Systems, P&dmgdiaiteltoity

Address Computation Instruction

m leaq Src, Dst

" Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
= Computing addresses without a memory reference
= E.g., translationofp = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
1 12 (1 .
{°ng miz(long x) Converted to ASM by compiler:
return x*12; leaq (%$rdi,%rdi,2), %rax # t <- x+x*2

} salq $2, %rax # return t<<2

42

Introduction to Computer Systems, P&dmgdiaiteltoity

Some Arithmetic Operations

m Two Operand Instructions:
Format Computation
addg Src,Dest Dest = Dest + Src
subg Src,Dest Dest = Dest — Src
imulg Src,Dest Dest = Dest * Src

salqg Src,Dest Dest = Dest << Src Also called shlq
sarqg Src,Dest Dest = Dest >> Src Arithmetic
shrqg Src,Dest Dest = Dest >> Src Logical

Xorqg Src,Dest Dest = Dest A Src

andqg Src,Dest Dest = Dest & Src

orqg Src,Dest Dest = Dest | Src

m Watch out for argument order!
= (Warning: Intel docs use “op Dest,Src”)

m No distinction between signed and unsigned int (why?)
43

Introduction to Computer Systems, P&dmgdiaiteltoity

Some Arithmetic Operations

m One Operand Instructions

incg Dest Dest =Dest + 1
decq Dest Dest =Dest -1
negq Dest Dest = — Dest
notqg Dest Dest = ~Dest

m See book for more instructions

Introduction to Computer Systems, P&dmgdiaiteltoity

Arithmetic Expression Example

arith:
leaq $rdi,%rsi), %Srax
long arith addg $rdx, %rax
(long x, long y, long z) leaq %rsi,%rsi,2), %Srdx
{ salq $4, S$rdx
long tl1 = x+ty; leaq 4 (%rdi,%$rdx), %rcx
long t2 = z+tl; imulqg $rcx, %rax
long t3 = x+4; ret
long t4 =y * 48;]]
long t5 = t3 + t4; Interesting Instructions
long rval = t2 * t5; " leagq: address computation
} return rval; = salg: shift
= imulgqg: multiplication

= But, only used once

45

Understanding Arithmetic Expression

Example

arith:
leaq %$rdi,%rsi), %rax # tl
long arith addq $rdx, %rax # t2
(long x, long y, long z) leaq $rsi,%rsi,2), %Srdx
{ salqg $4, %$rdx # t4
long tl1 = x+y; leaq 4 (%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulqg %$rcx, %rax # rval
long t3 = x+4; ret

long t4 =y * 48;

lenty #5 = E G Register _[Usels)

long rval = t2 * t5;

return rval; trdi Argument x
} 3rsi Argument y
Srdx Argument z , t4
$rax tl, t2, rval
srdx t4

$rcx t5

46

Introduction to Computer Systems, Peking University

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts

m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= C compiler will figure out different instruction combinations to
carry out computation

47

