
Introduction to Computer Systems, Peking University

11

Machine-Level Programming I: Basics

Introduction to Computer Systems
4th Lecture, Sep. 18, 2025

Instructors:
Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao
Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

22

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ C, assembly, machine code
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations

Introduction to Computer Systems, Peking University

33

Intel x86 Processors
¢ Dominate laptop/desktop/server market

¢ Evolutionary design
§ Backwards compatible up until 8086, introduced in 1978
§ Added more features as time goes on

§ Now 3 volumes, about 5,000 pages of documentation

¢ Complex instruction set computer (CISC)
§ Many different instructions with many different formats

§ But, only small subset encountered with Linux programs
§ Hard to match performance of Reduced Instruction Set Computers

(RISC)
§ But, Intel has done just that!

§ In terms of speed. Less so for low power.

Introduction to Computer Systems, Peking University

44

Intel x86 Evolution: Milestones

Name Date Transistors MHz
¢ 8086 1978 29K 5-10

§ First 16-bit Intel processor. Basis for IBM PC & DOS
§ 1MB address space

¢ 386 1985 275K 16-33
§ First 32 bit Intel processor , referred to as IA32
§ Added “flat addressing”, capable of running Unix

¢ Pentium 4E 2004 125M 2800-3800
§ First 64-bit Intel x86 processor, referred to as x86-64

¢ Core 2 2006 291M 1060-3333
§ First multi-core Intel processor

¢ Core i7 2008 731M 1600-4400
§ Four cores

Introduction to Computer Systems, Peking University

55

Intel x86 Processors, cont.
¢ Machine Evolution

§ 386 1985 0.3M
§ Pentium 1993 3.1M
§ Pentium/MMX 1997 4.5M
§ Pentium Pro 1995 6.5M
§ Pentium 4 2000 42M
§ Core 2 Duo 2006 291M
§ Core i7 2008 731M
§ Core i7 Skylake 2015 1.9B
§ Xeon Skylake-SP 2017 8B

¢ Added Features
§ Instructions to support multimedia operations
§ Instructions to enable more efficient conditional operations
§ Transition from 32 bits to 64 bits
§ More cores

Introduction to Computer Systems, Peking University

66

Intel x86 Processors, cont.
¢ Past Generations

§ 1st Pentium Pro 1995 600 nm
§ 1st Pentium III 1999 250 nm
§ 1st Pentium 4 2000 180 nm
§ 1st Core 2 Duo 2006 65 nm

¢ Recent & Upcoming Generations
1. Nehalem 2008 45 nm
2. Sandy Bridge 2011 32 nm
3. Ivy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
7. Kaby Lake 2016 14 nm
8. Coffee Lake 2017 14 nm
9. Cannon Lake 2018 10 nm
10. Ice Lake 2019 10 nm
11. Tiger Lake 2020 10 nm

Process technology

Process technology dimension
= width of narrowest wires
(10 nm ≈ 100 atoms wide)

Introduction to Computer Systems, Peking University

77

2018 State of the Art: Coffee Lake

¢ Mobile Model: Core i7
§ 2.2-3.2 GHz
§ 45 W

¢ Server Model: Xeon E
§ Integrated graphics
§ Multi-socket enabled
§ 3.3-3.8 GHz
§ 80-95 W

¢ Desktop Model: Core i7
§ Integrated graphics
§ 2.4-4.0 GHz
§ 35-95 W

Introduction to Computer Systems, Peking University

88

x86 Clones: Advanced Micro Devices (AMD)
¢ Historically
§AMD has followed just behind Intel
§A little bit slower, a lot cheaper

¢ Then
§Recruited top circuit designers from Digital Equipment Corp. and

other downward trending companies
§Built Opteron: tough competitor to Pentium 4
§Developed x86-64, their own extension to 64 bits

¢ Recent Years
§ Intel got its act together

§ 1995-2011: Lead semiconductor “fab” in world
§ 2018: #2 largest by $$ (#1 is Samsung)
§ 2019: reclaimed #1

§AMD fell behind
§ Relies on external semiconductor manufacturer GlobalFoundaries
§ ca. 2019 CPUs (e.g., Ryzen) are competitive again

Introduction to Computer Systems, Peking University

99

Intel’s 64-Bit History
¢ 2001: Intel Attempts Radical Shift from IA32 to IA64

§ Totally different architecture (Itanium)
§ Executes IA32 code only as legacy
§ Performance disappointing

¢ 2003: AMD Steps in with Evolutionary Solution
§ x86-64 (now called “AMD64”)

¢ Intel Felt Obligated to Focus on IA64
§ Hard to admit mistake or that AMD is better

¢ 2004: Intel Announces EM64T extension to IA32
§ Extended Memory 64-bit Technology
§ Almost identical to x86-64!

¢ All but low-end x86 processors support x86-64
§ But, lots of code still runs in 32-bit mode

Introduction to Computer Systems, Peking University

1010

Our Coverage
¢ IA32

§ The traditional x86
§ For this course: RIP, Fall 2016

¢ x86-64
§ The standard
§ Server> gcc hello.c

§ Server> gcc –m64 hello.c

¢ Presentation
§ Book covers x86-64
§ Web aside on IA32
§ We will only cover x86-64

Introduction to Computer Systems, Peking University

1111

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ C, assembly, machine code
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations

Introduction to Computer Systems, Peking University

1212

Definitions
¢ Architecture: (also ISA: instruction set architecture) The

parts of a processor design that one needs to understand
for writing correct machine/assembly code
§ Examples: instruction set specification, registers

§ Machine Code: The byte-level programs that a processor executes
§ Assembly Code: A text representation of machine code

¢ Microarchitecture: Implementation of the architecture
§ Examples: cache sizes and core frequency

¢ Example ISAs:
§ Intel: x86, IA32, Itanium, x86-64
§ ARM: Used in almost all mobile phones
§ RISC V: New open-source ISA

Introduction to Computer Systems, Peking University

1313

CPU

Assembly/Machine Code View

Programmer-Visible State
§ PC: Program counter

§ Address of next instruction
§ Called “RIP” (x86-64)

§ Register file
§ Heavily used program data

§ Condition codes
§ Store status information about most

recent arithmetic or logical operation
§ Used for conditional branching

§ Memory
§ Byte addressable array
§ Code and user data
§ Stack to support procedures

PC
Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

Introduction to Computer Systems, Peking University

1414

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
§ Code in files p1.c p2.c
§ Compile with command: gcc –Og p1.c p2.c -o p

§ Use basic optimizations (-Og) [New to recent versions of GCC]
§ Put resulting binary in file p

Introduction to Computer Systems, Peking University

1515

Compiling Into Assembly
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long y,
long *dest)

{
long t = plus(x, y);
*dest = t;

}

Generated x86-64 Assembly
sumstore:

pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Obtain (on our server machine) with command

gcc –Og –S sum.c

Produces file sum.s

Warning: Will get very different results on our server
machines (Andrew Linux, Mac OS-X, …) due to different
versions of gcc and different compiler settings.

Introduction to Computer Systems, Peking University

1616

What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus

movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Introduction to Computer Systems, Peking University

1717

What it really looks like
.globl sumstore
.type sumstore, @function

sumstore:
.LFB35:

.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus

movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc

.LFE35:
.size sumstore, .-sumstore

Things that look weird
and are preceded by a ‘.’
are generally directives.

sumstore:
pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Introduction to Computer Systems, Peking University

1818

Assembly Characteristics: Data Types
¢ “Integer” data of 1, 2, 4, or 8 bytes

§ Data values
§ Addresses (untyped pointers)

¢ Floating point data of 4, 8, or 10 bytes

¢ (SIMD vector data types of 8, 16, 32 or 64 bytes)

¢ Code: Byte sequences encoding series of instructions

¢ No aggregate types such as arrays or structures
§ Just contiguously allocated bytes in memory

Introduction to Computer Systems, Peking University

1919

Assembly Characteristics: Operations
¢ Transfer data between memory and register

§ Load data from memory into register
§ Store register data into memory

¢ Perform arithmetic function on register or memory data

¢ Transfer control
§ Unconditional jumps to/from procedures
§ Conditional branches
§ Indirect branches

Introduction to Computer Systems, Peking University

2020

Code for sumstore
0x0400595:

0x53
0x48
0x89
0xd3
0xe8
0xf2
0xff
0xff
0xff
0x48
0x89
0x03
0x5b
0xc3

Object Code
¢ Assembler

§ Translates .s into .o
§ Binary encoding of each instruction
§ Nearly-complete image of executable code
§ Missing linkages between code in different

files

¢ Linker
§ Resolves references between files
§ Combines with static run-time libraries

§ E.g., code for malloc, printf
§ Some libraries are dynamically linked

§ Linking occurs when program begins
execution

• Total of 14 bytes
• Each instruction

1, 3, or 5 bytes
• Starts at address
0x0400595

Introduction to Computer Systems, Peking University

2121

Machine Instruction Example
¢ C Code

§ Store value t where designated by
dest

¢ Assembly
§ Move 8-byte value to memory

§ Quad words in x86-64 parlance
§ Operands:

t: Register %rax
dest: Register %rbx
*dest: MemoryM[%rbx]

¢ Object Code
§ 3-byte instruction
§ Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Introduction to Computer Systems, Peking University

2222

Disassembled

Disassembling Object Code

¢ Disassembler
objdump –d sum

§ Useful tool for examining object code
§ Analyzes bit pattern of series of instructions
§ Produces approximate rendition of assembly code
§ Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590 <plus>
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

Introduction to Computer Systems, Peking University

2323

Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push %rbx
0x0000000000400596 <+1>: mov %rdx,%rbx
0x0000000000400599 <+4>: callq 0x400590 <plus>
0x000000000040059e <+9>: mov %rax,(%rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

Alternate Disassembly

¢ Within gdb Debugger
gdb sum
disassemble sumstore

§ Disassemble procedure
x/14xb sumstore
§ Examine the 14 bytes starting at sumstore

Object
0x0400595:

0x53
0x48
0x89
0xd3
0xe8
0xf2
0xff
0xff
0xff
0x48
0x89
0x03
0x5b
0xc3

Introduction to Computer Systems, Peking University

2424

What Can be Disassembled?

¢ Anything that can be interpreted as executable code
¢ Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

Introduction to Computer Systems, Peking University

2525

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ C, assembly, machine code
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations

Introduction to Computer Systems, Peking University

2626

%rsp

x86-64 Integer Registers

§ Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

Introduction to Computer Systems, Peking University

2727

Some History: IA32 Registers
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin
(mostly obsolete)

Introduction to Computer Systems, Peking University

2828

Moving Data
¢ Moving Data

movq Source, Dest:

¢ Operand Types
§ Immediate: Constant integer data

§ Example: $0x400, $-533
§ Like C constant, but prefixed with ‘$’
§ Encoded with 1, 2, or 4 bytes

§ Register: One of 16 integer registers
§ Example: %rax, %r13
§ But %rsp reserved for special use
§ Others have special uses for particular instructions

§ Memory: 8 consecutive bytes of memory at address given by register
§ Simplest example: (%rax)
§ Various other “address modes”

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source

Introduction to Computer Systems, Peking University

2929

movq Operand Combinations

Cannot do memory-memory transfer with a single instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

Introduction to Computer Systems, Peking University

3030

Simple Memory Addressing Modes
¢ Normal (R) Mem[Reg[R]]

§ Register R specifies memory address
§ Aha! Pointer dereferencing in C

movq (%rcx),%rax

¢ Displacement D(R) Mem[Reg[R]+D]
§ Register R specifies start of memory region
§ Constant displacement D specifies offset

movq 8(%rbp),%rdx

Introduction to Computer Systems, Peking University

3131

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Introduction to Computer Systems, Peking University

3232

%rdi

%rsi

%rax

%rdx

Understanding Swap()

void swap
(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = t1;
*yp = t0;

}

Memory

Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Registers

Introduction to Computer Systems, Peking University

3333

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Introduction to Computer Systems, Peking University

3434

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Introduction to Computer Systems, Peking University

3535

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Introduction to Computer Systems, Peking University

3636

Understanding Swap()

456

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Introduction to Computer Systems, Peking University

3737

Understanding Swap()

456

123

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers
Memory

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

0x120

0x118

0x110

0x108

0x100

Address

Introduction to Computer Systems, Peking University

3838

Simple Memory Addressing Modes
¢ Normal (R) Mem[Reg[R]]

§ Register R specifies memory address
§ Aha! Pointer dereferencing in C

movq (%rcx),%rax

¢ Displacement D(R) Mem[Reg[R]+D]
§ Register R specifies start of memory region
§ Constant displacement D specifies offset

movq 8(%rbp),%rdx

Introduction to Computer Systems, Peking University

3939

Complete Memory Addressing Modes
¢ Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
§ D: Constant “displacement” 1, 2, or 4 bytes
§ Rb: Base register: Any of 16 integer registers
§ Ri: Index register: Any, except for %rsp
§ S: Scale: 1, 2, 4, or 8 (why these numbers?)

¢ Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Introduction to Computer Systems, Peking University

4040

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080

Introduction to Computer Systems, Peking University

4141

Today: Machine Programming I: Basics
¢ History of Intel processors and architectures
¢ C, assembly, machine code
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations

Introduction to Computer Systems, Peking University

4242

Carnegie Mellon

Address Computation Instruction
¢ leaq Src, Dst
§ Src is address mode expression
§ Set Dst to address denoted by expression

¢ Uses
§ Computing addresses without a memory reference

§ E.g., translation of p = &x[i];
§ Computing arithmetic expressions of the form x + k*y

§ k = 1, 2, 4, or 8

¢ Example
long m12(long x)
{
return x*12;

}
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Introduction to Computer Systems, Peking University

4343

Carnegie Mellon

Some Arithmetic Operations
¢ Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest - Src
imulq Src,Dest Dest = Dest * Src
salq Src,Dest Dest = Dest << Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

¢ Watch out for argument order!
§ (Warning: Intel docs use “op Dest,Src”)

¢ No distinction between signed and unsigned int (why?)

Introduction to Computer Systems, Peking University

4444

Carnegie Mellon

Some Arithmetic Operations
¢ One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest = Dest - 1
negq Dest Dest = - Dest
notq Dest Dest = ~Dest

¢ See book for more instructions

Introduction to Computer Systems, Peking University

4545

Carnegie Mellon

Arithmetic Expression Example

Interesting Instructions
§ leaq: address computation
§ salq: shift
§ imulq: multiplication

§ But, only used once

long arith
(long x, long y, long z)
{
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax
addq %rdx, %rax
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx
leaq 4(%rdi,%rdx), %rcx
imulq %rcx, %rax
ret

Introduction to Computer Systems, Peking University

4646

Carnegie Mellon

Understanding Arithmetic Expression
Example

long arith
(long x, long y, long z)
{
long t1 = x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

}

arith:
leaq (%rdi,%rsi), %rax # t1
addq %rdx, %rax # t2
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx # t4
leaq 4(%rdi,%rdx), %rcx # t5
imulq %rcx, %rax # rval
ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z,t4

%rax t1, t2, rval

%rdx t4

%rcx t5

Introduction to Computer Systems, Peking University

4747

Machine Programming I: Summary
¢ History of Intel processors and architectures

§ Evolutionary design leads to many quirks and artifacts

¢ C, assembly, machine code
§ New forms of visible state: program counter, registers, ...
§ Compiler must transform statements, expressions, procedures into

low-level instruction sequences

¢ Assembly Basics: Registers, operands, move
§ The x86-64 move instructions cover wide range of data movement

forms

¢ Arithmetic
§ C compiler will figure out different instruction combinations to

carry out computation

