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Today: Floating Point
¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary
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Fractional binary numbers
¢ What is 1011.1012?
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Fractional Binary Numbers

¢ Representation
§ Bits to right of “binary point” represent fractional powers of 2
§ Represents rational number:

• • •
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Fractional Binary Numbers: Examples
¢ Value Representation

5 3/4 = 23/4 101.112 = 4 + 1 + 1/2  + 1/4
2 7/8 = 23/8 010.1112 = 2 + 1/2  + 1/4 + 1/8
1 7/16 = 23/16 001.01112 = 1 + 1/4 + 1/8 + 1/16

¢ Observations
§ Divide by 2 by shifting right (unsigned)
§ Multiply by 2 by shifting left
§ Numbers of form 0.111111…2 are just below 1.0

§ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
§ Use notation 1.0 – ε
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Representable Numbers
¢ Limitation #1
§ Can only exactly represent numbers of the form x/2k

§ Other rational numbers have repeating bit representations

§ Value Representation
§ 1/3 0.0101010101[01]…2
§ 1/5 0.001100110011[0011]…2
§ 1/10 0.0001100110011[0011]…2

¢ Limitation #2
§ Just one setting of binary point within the w bits

§ Limited range of numbers (very small values?  very large?)
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Today: Floating Point
¢ Background: Fractional binary numbers
¢ IEEE floating point standard: Definition
¢ Example and properties
¢ Rounding, addition, multiplication
¢ Floating point in C
¢ Summary
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IEEE Floating Point
¢ IEEE Standard 754
§ Established in 1985 as uniform standard for floating point arithmetic

§ Before that, many idiosyncratic formats
§ Supported by all major CPUs

¢ Driven by numerical concerns
§ Nice standards for rounding, overflow, underflow
§ Hard to make fast in hardware

§ Numerical analysts predominated over hardware designers in 
defining standard
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This is important!

¢ Ariane 5 explodes on maiden voyage: $500 MILLION dollars lost
§ 64-bit floating point number assigned to 16-bit integer (1996)
§ Legacy code from Ariane 4 with a lower top speed
§ Causes rocket to get incorrect value of horizontal velocity and crash

¢ Patriot Missile defense system misses scud – 28 people die
§ System tracks time in tenths of second
§ Converted from integer to floating point number.
§ Accumulated rounding error causes drift.  20% drift over 8 hours.
§ Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-

estimation sufficiently large to miss incoming missiles.
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(Binary) Scientific Notation
¢ What are the parts of a number in scientific notation?

¢ What value does the significand always begin with in 
scientific notation?

1.11011011011012 x 213

Significand Exponent
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Floating Point Representation
¢ Numerical Form: 

(–1)s M 2E

§ Sign bit s determines whether number is negative or positive
§ Significand M normally a fractional value in range [1.0,2.0).
§ Exponent E weights value by power of two

¢ Encoding
§ MSB s is sign bit s
§ exp field encodes E (but is not equal to E)
§ frac field encodes M (but is not equal to M)

s exp frac

Example: 
1521310 = (-1)0 x 1.11011011011012 x 213
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Precision options
¢ Single precision: 32 bits
» 7 decimal digits, 10±38

¢ Double precision: 64 bits
» 16 decimal digits, 10±308

¢ Other formats: half precision, quad precision 

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits
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Three “kinds” of floating point numbers
s exp frac

1 e-bits f-bits

00…00 exp ≠ 0 and exp ≠ 11…11 11…11

denormalized normalized special
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“Normalized” Values
¢ When: exp ≠ 000…0 and exp ≠ 111…1

¢ Exponent coded as a biased value: E =  Exp – Bias
§ Exp: unsigned value of exp field
§ Bias = 2k-1 - 1, where k is number of exponent bits

§ Single precision: 127 (Exp: 1…254, E: -126…127)
§ Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

¢ Significand coded with implied leading 1: M =  1.xxx…x2

§ xxx…x: bits of frac field
§ Minimum when frac=000…0 (M = 1.0)
§ Maximum when frac=111…1 (M = 2.0 – ε)
§ Get extra leading bit for “free”

v = (–1)s M 2E
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Normalized Encoding Example
¢ Value: float F = 15213.0;

§ 1521310 = 111011011011012  

= 1.11011011011012 x 213

¢ Significand
M = 1.11011011011012
frac= 110110110110100000000002

¢ Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

¢ Result:

0 10001100 11011011011010000000000 
s exp frac

v = (–1)s M 2E

E =  Exp – Bias
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Denormalized Values
¢ Condition: exp = 000…0

¢ Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
¢ Significand coded with implied leading 0: M = 0.xxx…x2

§ xxx…x: bits of frac

¢ Cases
§ exp = 000…0, frac = 000…0

§ Represents zero value
§ Note distinct values: +0 and –0 (why?)

§ exp = 000…0, frac ≠ 000…0
§ Numbers closest to 0.0
§ Equispaced

v = (–1)s M 2E

E =  1 – Bias



Introduction to Computer Systems,  Peking University 

17

Special Values
¢ Condition: exp = 111…1

¢ Case: exp = 111…1, frac = 000…0
§ Represents value ¥ (infinity)
§ Operation that overflows
§ Both positive and negative
§ E.g., 1.0/0.0 = −1.0/−0.0 = +¥,  1.0/−0.0 = −¥

¢ Case: exp = 111…1, frac ≠ 000…0
§ Not-a-Number (NaN)
§ Represents case when no numeric value can be determined
§ E.g., sqrt(–1), ¥ − ¥, ¥ ´ 0
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C float Decoding Example
float: 0xC0A00000

binary:

1 8-bits 23-bits

E = 129

S = 1 -> negative number
M = 1.010 0000 0000 0000 0000 0000 
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E =  exp – Bias

v = (–1)s M 2E  =

Bias = 2k-1 – 1 = 127
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C float Decoding Example #1

E = 129

S = 1 -> negative number
M = 1.010 0000 0000 0000 0000 0000 
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E =  exp – Bias

v = (–1)s M 2E  =

float: 0xC0A00000

binary:   1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000 

1 8-bits 23-bits
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C float Decoding Example #1
float: 0xC0A00000

binary:   1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000 

1 8-bits 23-bits

E = exp – Bias = 129 – 127 = 2 (decimal) 

S = 1 -> negative number
M = 1.010 0000 0000 0000 0000 0000 
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E =  exp – Bias

v = (–1)s M 2E  = (-1)1 * 1.25 * 22 = -5

Bias = 2k-1 – 1 = 127
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C float Decoding Example #2

E = 129

S = 1 -> negative number
M = 0.010 0000 0000 0000 0000 0000 
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

E =  1 – Bias

v = (–1)s M 2E  =

float: 0x001C0000

binary:   0000 0000 0001 1100 0000 0000 0000 0000

0 0000 0000 001 1100 0000 0000 0000 0000 

1 8-bits 23-bits
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C float Decoding Example #2
float: 0x001C0000

E = 1 – Bias = 1 – 127 = –126 (decimal) 

S = 0 -> positive number
M = 0.001 1100 0000 0000 0000 0000 
M = 1/8 + 1/16 + 1/32 = 7/32 = 7*2–5

v = (–1)s M 2E

E =  1 – Bias

v = (–1)s M 2E  = (-1)0 * 7*2–5 * 2–126 = 7*2–131

Bias = 2k-1 – 1 = 127

binary:   0000 0000 0001 1100 0000 0000 0000 0000

0 0000 0000 001 1100 0000 0000 0000 0000 

1 8-bits 23-bits

v ≈ 2.571393892 X 10–39
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Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN
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¢ IEEE floating point standard: Definition
¢ Example and properties
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¢ Floating point in C
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Tiny Floating Point Example

¢ 8-bit Floating Point Representation
§ the sign bit is in the most significant bit
§ the next four bits are the exponent, with a bias of 7
§ the last three bits are the frac

¢ Same general form as IEEE Format
§ normalized, denormalized
§ representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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s exp  frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (s=0 only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

v = (–1)s M 2E

norm: E = exp – Bias
denorm: E = 1 – Bias

(-1)0(0+1/4)*2-6

(-1)0(1+1/8)*2-6
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-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values
¢ 6-bit IEEE-like format
§ e = 3 exponent bits
§ f = 2 fraction bits
§ Bias is 23-1-1 = 3

¢ Notice how the distribution gets denser toward zero. 

8 values

s exp frac

1 3-bits 2-bits
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Distribution of Values (close-up view)
¢ 6-bit IEEE-like format
§ e = 3 exponent bits
§ f = 2 fraction bits
§ Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Special Properties of the IEEE Encoding
¢ FP Zero Same as Integer Zero
§ All bits = 0

¢ Can (Almost) Use Unsigned Integer Comparison
§ Must first compare sign bits
§ Must consider −0 = 0
§ NaNs problematic

§ Will be greater than any other values
§ What should comparison yield?

§ Otherwise OK
§ Denorm vs. normalized
§ Normalized vs. infinity
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Floating Point Operations: Basic Idea
¢ x +f y = Round(x + y)

¢ x ´f y = Round(x ´ y)

¢ Basic idea
§ First compute exact result
§ Make it fit into desired precision

§ Possibly overflow if exponent too large
§ Possibly round to fit into frac
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Rounding

¢ Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $2.50 –$1.50
§ Towards zero $1 $1 $1 $2 –$1
§ Round down (−¥) $1 $1 $1 $2 –$2
§ Round up (+¥) $2 $2 $2 $3 –$1
§ Nearest Even* (default) $1 $2 $2 $2 –$2

*Round to nearest, but if half-way in-between then round to nearest even
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Closer Look at Round-To-Even
¢ Default Rounding Mode
§ Hard to get any other kind without dropping into assembly
§ All others are statistically biased

§ Sum of set of positive numbers will consistently be over- or under-
estimated

¢ Applying to Other Decimal Places / Bit Positions
§ When exactly halfway between two possible values

§ Round so that least significant digit is even
§ E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
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Rounding Binary Numbers
¢ Binary Fractional Numbers
§ “Even” when least significant bit is 0
§ “Half way” when bits to right of rounding position = 100…2

¢ Examples
§ Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded 

Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (  1/2—up) 3
2 5/8 10.101002 10.102 (  1/2—down) 2 1/2
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FP Multiplication
¢ (–1)s1 M1 2E1 x   (–1)s2 M2 2E2

¢ Exact Result: (–1)s M 2E

§ Sign s: s1 ^ s2
§ Significand M: M1 x M2
§ Exponent E: E1 + E2

¢ Fixing
§ If M ≥ 2, shift M right, increment E
§ If E out of range, overflow 
§ Round M to fit frac precision

¢ Implementation
§ Biggest chore is multiplying significands

4 bit significand: 1.010*22 x 1.110*23 = 10.0011*25
= 1.00011*26 = 1.001*26
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Floating Point Addition
¢ (–1)s1 M1 2E1 +   (-1)s2 M2 2E2

§Assume E1 > E2

¢ Exact Result: (–1)s M 2E

§Sign s, significand M: 
§ Result of signed align & add

§Exponent E: E1

¢ Fixing
§If M ≥ 2, shift M right, increment E
§if M < 1, shift M left k positions, decrement E by k
§Overflow if E out of range
§Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up

1.010*22 + 1.110*23 = (0.1010 + 1.1100)*23

= 10.0110 * 23 = 1.00110 * 24 = 1.010 * 24
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Mathematical Properties of FP Add
¢ Compare to those of Abelian Group

§ Closed under addition?
§ But may generate infinity or NaN

§ Commutative? 
§ Associative?

§ Overflow and inexactness of rounding
§ (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 
3.14

§ 0 is additive identity? 
§ Every element has additive inverse?

§ Yes, except for infinities & NaNs

¢ Monotonicity
§ a ≥ b ⇒ a+c ≥ b+c?

§ Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost
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Mathematical Properties of FP Mult
¢ Compare to Commutative Ring
§ Closed under multiplication?

§ But may generate infinity or NaN
§ Multiplication Commutative?
§ Multiplication is Associative?

§ Possibility of overflow, inexactness of rounding
§ Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

§ 1 is multiplicative identity?
§ Multiplication distributes over addition?

§ Possibility of overflow, inexactness of rounding
§ 1e20*(1e20-1e20)= 0.0,  1e20*1e20 – 1e20*1e20 = NaN

¢ Monotonicity
§ a ≥ b & c ≥ 0  ⇒ a * c ≥ b *c?

§ Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost
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¢ Floating point in C
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Floating Point in C
¢ C Guarantees Two Levels

§float single precision
§double double precision

¢ Conversions/Casting
§ Casting between int, float, and double changes bit 
representation
§ double/float → int

§ Truncates fractional part
§ Like rounding toward zero
§ Not defined when out of range or NaN: Generally sets to TMin

§ int → double
§ Exact conversion, as long as int has ≤ 53 bit word size

§ int → float
§ Will round according to rounding mode
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Floating Point Puzzles

¢ For each of the following C expressions, either:
§ Argue that it is true for all argument values
§ Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;
float f = …;

double d = …;

Assume neither
d nor f is NaN
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Summary
¢ IEEE Floating Point has clear mathematical  properties
¢ Represents numbers of form M x 2E

¢ One can reason about operations independent of 
implementation
§ As if computed with perfect precision and then rounded

¢ Not the same as real arithmetic
§ Violates associativity/distributivity
§ Makes life difficult for compilers & serious numerical applications 

programmers
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Additional Slides
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Creating Floating Point Number
¢ Steps
§ Normalize to have leading 1
§ Round to fit within fraction
§ Postnormalize to deal with effects of rounding

¢ Case Study
§ Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers
128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111

s exp frac

1 4-bits 3-bits
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Normalize
¢ Requirement
§ Set binary point so that numbers of form 1.xxxxx
§ Adjust all to have leading one

§ Decrement exponent as shift left
Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4

138 10001010 1.0001010 7
63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits
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Rounding

¢ Round up conditions
§ Round = 1, Sticky = 1 ➙ > 0.5
§ Guard = 1, Round = 1, Sticky = 0 ➙ Round to even
Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

1.BBGRXXX
Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: OR of remaining bits
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Postnormalize
¢ Issue
§ Rounding may have caused overflow
§ Handle by shifting right once & incrementing exponent
Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20

138 1.001 7 134
63 10.000 5 1.000/6 64
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Interesting Numbers
Description exp frac Numeric Value
¢ Zero 00…00 00…00 0.0
¢ Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

§ Single ≈ 1.4 x 10–45

§ Double ≈ 4.9 x 10–324

¢ Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

§ Single ≈ 1.18 x 10–38

§ Double ≈ 2.2 x 10–308

¢ Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

§ Just larger than largest denormalized
¢ One 01…11 00…00 1.0
¢ Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

§ Single ≈ 3.4 x 1038

§ Double ≈ 1.8 x 10308

{single,double}


