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Fractional binary numbers

m Whatis 1011.101,?
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Fractional Binary Numbers

2I
2i—1
‘ — 1
bi |bia| += | b2 | b1 | bolb1b2|bs| e |b.
1/2 — |
1/4 ® 6 o
1/8
m Representation 2]

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number:
P Z bk X Qk
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Fractional Binary Numbers: Examples

m Value Representation
53/4 =23/4 101.112 =4+1+1/2 +1/4
27/8 =23/8 10.1112 =2+1/2 +1/4+1/8
17/16 =23/16 1.0111> =1+1/4+1/8+1/16

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...2 are just below 1.0
= 1/2+1/4+1/8+..+1/2'+...— 1.0
= Use notation 1.0—¢
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Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2k
= Other rational numbers have repeating bit representations
= Value Representation
= 1/3 0.01010101011[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.0001100110011[0011]..2

m Limitation #2
= Just one setting of binary point within the w bits
= Limited range of numbers (very small values? very large?)
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Today: Floating Point

IEEE floating point standard: Definition
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IEEE Floating Point

m |EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow

= Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard
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This is important!

m Ariane 5 explodes on maiden voyage: $500 MILLION dollars lost
= 64-bit floating point number assigned to 16-bit integer (1996)
= Legacy code from Ariane 4 with a lower top speed
= Causes rocket to get incorrect value of horizontal velocity and crash

m Patriot Missile defense system misses scud — 28 people die
= System tracks time in tenths of second
= Converted from integer to floating point number.
= Accumulated rounding error causes drift. 20% drift over 8 hours.

= Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-
estimation sufficiently large to miss incoming missiles.
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(Binary) Scientific Notation

m What are the parts of a number in scientific notation?

1.1101101101101, x 2™

Significand Exponent

m What value does the significand always begin with in
scientific notation?

10
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Floating Point Representation

Example:
m Numerical Form: 15213,9 =(-1)°x 1.1101101101101, x 213

(-1)°m 2°
= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB S is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

S |exp frac

1



Precision options

m Single precision: 32 bits
~ 7 decimal digits, 10*38
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s |exp frac
1 8-bits 23-bits
m Double precision: 64 bits
~ 16 decimal digits, 10*308
s |exp frac
1 11-bits 52-bits

m Other formats: half precision, quad precision

12
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Three “kinds” of floating point numbers

S [exp frac

1 e-bits f-bits

00...00 exp # 0 and exp # 11...11 11..11

denormalized normalized special

13
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“Normalized” Values vE(=1))M2"

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value of exp field
= Bias = 21 -1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx...x2
= xxx...X: bits of frac field
" Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111...1 (M =2.0—-¢)

= Get extra leading bit for “free”

14
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Normalized Encoding Example v= (=) M 2E

m Value: float F =
= 15213,, =11101101101101,
=1.1101101101101, x 213

E = Exp — Bias

15213.0;

m Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
m Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
m Result:
0{(100011004/11011011011010000000000
S exp frac

15



Denormalized Values

m Condition: exp = 000...0
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v=(=l)>M2F
E = 1-Bias

m Exponent value: E = 1 — Bias (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

" xxx.x:bits of frac

m Cases
" exp=000.0, frac=000..0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
" exp=000..0, frac# 000..0

= Numbers closest to 0.0
= Equispaced

16
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Special Values

m Condition:exp=111..1

m Case:exp=111.1, frac=000..0

= Represents value o0 (infinity)

® (QOperation that overflows

= Both positive and negative

= E.g,1.0/0.0=-1.0/-0.0 =+00, 1.0/-0.0 = -0

m Case:exp=111.1, frac#000..0

= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(—1), co— 00,00 x 0

17



Introduction to Computer Systems, Peking University

C float Decoding Example v= (=) M 2E

E = exp — Bias

float: 0xCOA00000 Bigs = 2k1—1 =127

binary:
1 8-bits 23-bits ,\(@\ P
e
E = 0 [0 [ 0000
1 [ 1 |0001
2 [2 [ 0010
S = 3 |3 [ 0011
4 | 4 | 0100
5 [ 5 | 0101
M = 6 [ 6 [ 0110
7 [ 7 | 0111
8 [ 8 | 1000
9 [ 9 [ 1001
A (101010
B |11 1011
v=(-1)°M 2E = C [12[1100
D |13 1101
E |14 | 1110
F |15 1111

18
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C float Decoding Example #1 v=(=1) M 2E

E = exp — Bias

float: 0xCOA00000

binary: 1100 0000 1

11000 0001 | O10 0000 OOOO 0OOOO 0OOOO o0OOO

1 8-bits 23-bits @'b\,bo\
3 P R
T TR
E = 0 [0 [ 0000
1 [ 1 |0001
2 [ 2 [ 0010
S = 3 |3 [ 0011
4 [ 4 [ 0100
5 [ 5 | 0101
M=1 6 [ 6 [ 0110
7 [ 7 | 0111
8 [ 8 | 1000
9 [ 9 [ 1001
A (101010
B [11 ] 1011
v=(-1)°M 2E = C [12[1100
D [13] 1101
E |14 | 1110
F [15] 1111

19
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C float Decoding Example #1 v= (=) M 2E

E = exp — Bias

float: 0xCOA00000

Bias =2X1-1=127

binary: 1100 0000 1

11000 0001 | O10 0000 OOOO 0OOOO 0OOOO o0OOO

1 8-bits 23-bits

\
&
%0* 000\6\((&

E = exp - Bias =129 - 127 = 2 (decimal)

0000

0001

0010

0011

S =1 -> negative number

0100

0101

M=1.010 0000 0000 0000 0000 0000

0110

0111

1000

=1 + 1/4 = 1.25

1001

1010

1011

v=(-1)*M 2E = (-1)1 * 1.25 * 22= -5

1100

1101

o el i Lo L e
ol ol m| o] @S| o u| s w(N| = o

H(EH|O| QW] | v|o|dloy| ;| b w| Nk o

1110

1111

20
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C float Decoding Example #2

float: 0x001C0000

binary: 0000 0000 O

Of 0000 0000 | OO1 1100 0000 0OOO 0OOOO 0OOO

1 8-bits 23-bits @'b\,bo\
3 P R
T TR
E = 0 [0 [ 0000
1 [ 1 |0001
2 [ 2 [ 0010
S = 3 |3 [ 0011
4 [ 4 [ 0100
5 [ 5 | 0101
M=0 6 | 6 | 0110
7 [ 7 | 0111
8 [ 8 | 1000
9 [ 9 [ 1001
A (101010
B [11 ] 1011
v=(-1)°M 2E = C [12[1100
D [13] 1101
E |14 | 1110
F [15] 1111

21
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C float Decoding Example #2

float: 0x001C0000

Bias =2X1-1=127

binary: 0000 0000 O

Of 0000 0000 | OO1 1100 0000 0OOO 0OOOO 0OOO

1 8-bits 23-bits

AN
.\<o° 3

ROPTAEN

E=1-Bias=1-127 =-126 (decimal)

0000

0001

0010

0011

S =0 -> positive number

0100

0101

M=0.001 1100 0000 0000 0000 0000

0110

0111

1000

=1/8 + 1/16 + 1/32 7/32 = T7*2°3

1001

1010

1011

V= (_1)5 M 2E = (_1)0 * 7%9-5 % 2-126 = 7%9-131

1100

1101

o el i Lo L e
ol ol m| o] @S| o u| s w(N| = o

H(EH|O| QW] | v|o|dloy| ;| b w| Nk o

1110

= 2.571393892 X 1039

1111

22
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Visualization: Floating Point Encodings

_OOI -Normalized |—Denorm u E+Denorm | +Normalized +|OO

| | taln: | |
NaN / \ NaN
— -0 +0 —

23
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Today: Floating Point

|
|
m Example and properties
|

24
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Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit

= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
® normalized, denormalized
= representation of 0, NaN, infinity

25
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v=(-1)M2F
norm: E = exp — Bias

Dynamic Range (s=0 only)

S exp frac E Value denorm: E = 1 — Bias

0 0000 00O -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized © 0000 010 -6 2/8*1/64 = 2/512  (-1)°(0+1/4)*2-¢
numbers

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 000 -6 8/8*1/64 = 8/512 smallest norm

0 0001 001 -6 9/8*1/64 = 9/512  (-1)0(1+1/8)*26

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 000 0 8/8*1 =1
numbers 0 0111 o001 0 9/8%*1 = 9/8 closest to 1 above

0 0111 o010 0 10/8*1 = 10/8

0 1110 110 7 14/8*128 = 224

0

1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/a inf

26
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Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= {=2 fraction bits S exp frac

" Bjasis231-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

/8values

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity

27
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Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= {=2 fraction bits S exp frac

" Biasis 3 1 3-bits 2-bits

—_—— ——— — et
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

28
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Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= Allbits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider -0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
=  Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

29
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Today: Floating Point

Rounding, addition, multiplication

30
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Floating Point Operations: Basic Idea

B X +£y Round (x + y)

B X Xf Yy Round (x X y)

m Basicidea
® First compute exact result
" Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £frac

31



Rounding

m Rounding Modes (illustrate with S rounding)

$1.40 S$1.60 $1.50 $2.50

= Towards zero S1
" Round down (-o0) S1
= Round up (+x) S2

= Nearest Even* (default) S1

S1
S1
S2
S2

Introduction to Computer Systems, Peking University

S1
S1
S2
$2 1

S2
S2
S3
$2V

-$1.50
_$1

_$ 1
—$2

*Round to nearest, but if half-way in-between then round to nearest even

32
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Closer Look at Round-To-Even

m Default Rounding Mode
= Hard to get any other kind without dropping into assembly

= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-

estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values

= Round so that least significant digit is even

= E.g., round to nearest hundredth

7.8949999
7.8950001
7.8950000
7.8850000

7.89
7.90
7.90
7.88

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

33
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Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is 0
= “Half way” when bits to right of rounding position = 100...2

m Examples
" Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded
Value
23/32 10.00011>  10.00: (<1/2—down) 2
23/16 10.001102 10.012 (>1/2—up) 21/4
27/8 10.111002 11.002 ( 1/2—up) 3

25/8 10.101002 10.102 ( 1/2—down) 21/2

34
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FP Multiplication

m (-1)t M1 28! x (-1)2 M2 2%2
m Exact Result: (-1)°M 2F

= Signs: s1/7s2
= Significand M: M1 x M2
" Exponent E: E1+E2

m Fixing

= |f M > 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit £rac precision

= Implementation

= Biggest chore is multiplying significands

4 bit significand: 1.010*22 x 1.110*23 = 10.0011*2>
= 1.00011*2% = 1.001%*2°

35
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Floating Point Addition

(-1)t M1 28! + (-1)%2 M2 2F2

"Assume E1 > E2 Get binary points lined up
Exact Result: (-1)° M 2° — E1-E2
=Sign s, significand M: (—1)"T M1

= Result of signed align & add
"Exponent E: E1 + (~1)*2 M2
Fixing
=|f M > 2, shift M right, increment E (-1)*M

=if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range
="Round M to fit £rac precision

1.010*%22 + 1.110*23 = (0.1010 + 1.1100) *23
= 10.0110 * 23 = 1.00110 * 24 = 1.010 * 24

36
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Mathematical Properties of FP Add

m Compare to those of Abelian Group

" Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
» (3.1441e10)-1e10 = 0, 3.14+(1el0-1e10)

3.14
= 0O is additive identity? Yes
= Every element has additive inverse? Almost

= Yes, except for infinities & NaNs

m Monotonicity
" a>b = a+c>b+c?

Almost

= Except for infinities & NaNs

37
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Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication? Yes
= But may generate infinity or NaN

Multiplication Commutative? Yes

Multiplication is Associative? No

= Possibility of overflow, inexactness of rounding

= Ex: (1e20*1e20) *1e-20=1nf, 1e20* (1e20*1e-20)=1e20
1 is multiplicative identity? Yes

Multiplication distributes over addition? No
= Possibility of overflow, inexactness of rounding
» 1e20*% (1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 =NaN

m Monotonicity
" a>b &c>0 =>a*c=>b *c? Almost

= Except for infinities & NaNs

38
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Today: Floating Point

Floating point in C

39
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Floating Point in C

m C Guarantees Two Levels

=float single precision
"double double precision

m Conversions/Casting

= Casting between int, £loat, and double changes bit
representation

" double/float > int

= Truncates fractional part

= Like rounding toward zero

= Not defined when out of range or NaN: Generally sets to TMin
" int 2 double

= Exact conversion, as long as int has £ 53 bit word size
"int - float

= Will round according to rounding mode
40
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Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

*d*d> 0.0
(d+£f) -d ==

x == (int) (float) x X

x == (int) (double) x V4

int x = _; f == (float) (double) £ V4
float f = . d == (double) (float) d X
double d = ..; £ ==-(-£); v
- 2/3 == 2/3.0 X

Assume neither -+ d<0.0 = ((d*2) < 0.0) V4
d nor £ is NaN - d> £ = -f > -d V4
v/

X

41
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Summary

m |EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2¢

m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded

m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

42
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Additional Slides

43
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Creating Floating Point Number

m Steps s exp frac

*= Normalize to have leading 1 _ _
L _ 1 4-bits 3-bits
= Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011

138 10001010

63 00111111

44



Normalize

m Requirement

= Set binary point so that numbers of form 1.xxxxx

= Adjust all to have leading one

S exp

frac

1 4-bits

= Decrement exponent as shift left

Value
128

15
17
19
138
63

Binary

10000000
00001101
00010001
00010011
10001010
00111111

Fraction

L

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

Exponent

O 9 & b W J

3-bits

Introduction to Computer Systems, Peking University
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Rounding

1 . BBGRXXX

Guard bit: LSB of result \_/ '

Sticky bit: OR of remaining bits

Round bit: 15t bit removed

m Round up conditions

®" Round=1, Sticky=1-—>0.5
® Guard =1, Round =1, Sticky =0 — Round to even

Value
128
15
17
19
138
63

Fraction

s

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

GRS
000
100
010
110
011
111

Incr?
N

K K K 2 Z
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Rounded

1.
.101
.000
.010
.001
10.

e W

000

000

46



Introduction to Computer Systems, Peking University

Postnormalize

m Issue
" Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

47



Interesting Numbers

Description exp
m Zero 00...00
m Smallest Pos. Denorm. 00...00

" Single=1.4x10™%

" Double =4.9 x 10732

Largest Denormalized 00...00
" Single=~1.18 x 1073

" Double=2.2x107308

Smallest Pos. Normalized 00...01
= Just larger than largest denormalized

One 01..11
Largest Normalized 11...10

= Single = 3.4 x 10

" Double = 1.8 x 103%

frac
00...00
00...01

11...11

00...00

00...00
11...11
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{single,double}

Numeric Value

0.0
2-{23,52} y 2-{126,1022}

(1.0 — ) x 2~ {126,022}

1.0 x 2~ {126,1022}

1.0
(2.0 — €) x 2{127,2023}
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