Floating Point

Introduction to Computer Systems
3rd Lecture, Sep. 15, 2025

Instructors:

Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao

Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

Introduction to Computer Systems, Peking University

Today: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating point in C

Summary

Introduction to Computer Systems, Peking University

Fractional binary numbers

m Whatis 1011.101,?

Introduction to Computer Systems, Peking University

Fractional Binary Numbers

2I
2i—1
‘ — 1
bi |bia| += | b2 | b1 | bolb1b2|bs| e |b.
1/2 — |
1/4 ® 6 o
1/8
m Representation 2]

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number:
P Z bk X Qk

Introduction to Computer Systems, Peking University

Fractional Binary Numbers: Examples

m Value Representation
53/4 =23/4 101.112 =4+1+1/2 +1/4
27/8 =23/8 10.1112 =2+1/2 +1/4+1/8
17/16 =23/16 1.0111> =1+1/4+1/8+1/16

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...2 are just below 1.0
= 1/2+1/4+1/8+..+1/2'+...— 1.0
= Use notation 1.0—¢

Introduction to Computer Systems, Peking University

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2k
= Other rational numbers have repeating bit representations
= Value Representation
= 1/3 0.01010101011[01]..2
= 1/5 0.001100110011[0011]..2
= 1/10 0.0001100110011[0011]..2

m Limitation #2
= Just one setting of binary point within the w bits
= Limited range of numbers (very small values? very large?)

Introduction to Computer Systems, Peking University

Today: Floating Point

IEEE floating point standard: Definition

Introduction to Computer Systems, Peking University

IEEE Floating Point

m |EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow

= Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard

Introduction to Computer Systems, Peking University

This is important!

m Ariane 5 explodes on maiden voyage: $500 MILLION dollars lost
= 64-bit floating point number assigned to 16-bit integer (1996)
= Legacy code from Ariane 4 with a lower top speed
= Causes rocket to get incorrect value of horizontal velocity and crash

m Patriot Missile defense system misses scud — 28 people die
= System tracks time in tenths of second
= Converted from integer to floating point number.
= Accumulated rounding error causes drift. 20% drift over 8 hours.

= Eventually (on 2/25/1991 system was on for 100 hours) causes range mis-
estimation sufficiently large to miss incoming missiles.

Introduction to Computer Systems, Peking University

(Binary) Scientific Notation

m What are the parts of a number in scientific notation?

1.1101101101101, x 2™

Significand Exponent

m What value does the significand always begin with in
scientific notation?

10

Introduction to Computer Systems, Peking University

Floating Point Representation

Example:
m Numerical Form: 15213,9 =(-1)°x 1.1101101101101, x 213

(-1)°m 2°
= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB S is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

S |exp frac

1

Precision options

m Single precision: 32 bits
~ 7 decimal digits, 10*38

Introduction to Computer Systems, Peking University

s |exp frac
1 8-bits 23-bits
m Double precision: 64 bits
~ 16 decimal digits, 10*308
s |exp frac
1 11-bits 52-bits

m Other formats: half precision, quad precision

12

Introduction to Computer Systems, Peking University

Three “kinds” of floating point numbers

S [exp frac

1 e-bits f-bits

00...00 exp # 0 and exp # 11...11 11..11

denormalized normalized special

13

Introduction to Computer Systems, Peking University

“Normalized” Values vE(=1))M2"

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value of exp field
= Bias = 21 -1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.xxx...x2
= xxx...X: bits of frac field
" Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111...1 (M =2.0—-¢)

= Get extra leading bit for “free”

14

Introduction to Computer Systems, Peking University

Normalized Encoding Example v= (=) M 2E

m Value: float F =
= 15213,, =11101101101101,
=1.1101101101101, x 213

E = Exp — Bias

15213.0;

m Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
m Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
m Result:
0{(100011004/11011011011010000000000
S exp frac

15

Denormalized Values

m Condition: exp = 000...0

Introduction to Computer Systems, Peking University

v=(=l)>M2F
E = 1-Bias

m Exponent value: E = 1 — Bias (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

" xxx.x:bits of frac

m Cases
" exp=000.0, frac=000..0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
" exp=000..0, frac# 000..0

= Numbers closest to 0.0
= Equispaced

16

Introduction to Computer Systems, Peking University

Special Values

m Condition:exp=111..1

m Case:exp=111.1, frac=000..0

= Represents value o0 (infinity)

® (QOperation that overflows

= Both positive and negative

= E.g,1.0/0.0=-1.0/-0.0 =+00, 1.0/-0.0 = -0

m Case:exp=111.1, frac#000..0

= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(—1), co— 00,00 x 0

17

Introduction to Computer Systems, Peking University

C float Decoding Example v= (=) M 2E

E = exp — Bias

float: 0xCOA00000 Bigs = 2k1—1 =127

binary:
1 8-bits 23-bits ,\(@\ P
e
E = 0 [0 [0000
1 [1 |0001
2 [2 [0010
S = 3 |3 [0011
4 | 4 | 0100
5 [5 | 0101
M = 6 [6 [0110
7 [7 | 0111
8 [8 | 1000
9 [9 [1001
A (101010
B |11 1011
v=(-1)°M 2E = C [12[1100
D |13 1101
E |14 | 1110
F |15 1111

18

Introduction to Computer Systems, Peking University

C float Decoding Example #1 v=(=1) M 2E

E = exp — Bias

float: 0xCOA00000

binary: 1100 0000 1

11000 0001 | O10 0000 OOOO 0OOOO 0OOOO o0OOO

1 8-bits 23-bits @'b\,bo\
3 P R
T TR
E = 0 [0 [0000
1 [1 |0001
2 [2 [0010
S = 3 |3 [0011
4 [4 [0100
5 [5 | 0101
M=1 6 [6 [0110
7 [7 | 0111
8 [8 | 1000
9 [9 [1001
A (101010
B [11] 1011
v=(-1)°M 2E = C [12[1100
D [13] 1101
E |14 | 1110
F [15] 1111

19

Introduction to Computer Systems, Peking University

C float Decoding Example #1 v= (=) M 2E

E = exp — Bias

float: 0xCOA00000

Bias =2X1-1=127

binary: 1100 0000 1

11000 0001 | O10 0000 OOOO 0OOOO 0OOOO o0OOO

1 8-bits 23-bits

\
&
%0* 000\6\((&

E = exp - Bias =129 - 127 = 2 (decimal)

0000

0001

0010

0011

S =1 -> negative number

0100

0101

M=1.010 0000 0000 0000 0000 0000

0110

0111

1000

=1 + 1/4 = 1.25

1001

1010

1011

v=(-1)*M 2E = (-1)1 * 1.25 * 22= -5

1100

1101

o el i Lo L e
ol ol m| o] @S| o u| s w(N| = o

H(EH|O| QW] | v|o|dloy| ;| b w| Nk o

1110

1111

20

Introduction to Computer Systems, Peking University

C float Decoding Example #2

float: 0x001C0000

binary: 0000 0000 O

Of 0000 0000 | OO1 1100 0000 0OOO 0OOOO 0OOO

1 8-bits 23-bits @'b\,bo\
3 P R
T TR
E = 0 [0 [0000
1 [1 |0001
2 [2 [0010
S = 3 |3 [0011
4 [4 [0100
5 [5 | 0101
M=0 6 | 6 | 0110
7 [7 | 0111
8 [8 | 1000
9 [9 [1001
A (101010
B [11] 1011
v=(-1)°M 2E = C [12[1100
D [13] 1101
E |14 | 1110
F [15] 1111

21

Introduction to Computer Systems, Peking University

C float Decoding Example #2

float: 0x001C0000

Bias =2X1-1=127

binary: 0000 0000 O

Of 0000 0000 | OO1 1100 0000 0OOO 0OOOO 0OOO

1 8-bits 23-bits

AN
.\<o° 3

ROPTAEN

E=1-Bias=1-127 =-126 (decimal)

0000

0001

0010

0011

S =0 -> positive number

0100

0101

M=0.001 1100 0000 0000 0000 0000

0110

0111

1000

=1/8 + 1/16 + 1/32 7/32 = T7*2°3

1001

1010

1011

V= (_1)5 M 2E = (_1)0 * 7%9-5 % 2-126 = 7%9-131

1100

1101

o el i Lo L e
ol ol m| o] @S| o u| s w(N| = o

H(EH|O| QW] | v|o|dloy| ;| b w| Nk o

1110

= 2.571393892 X 1039

1111

22

Introduction to Computer Systems, Peking University

Visualization: Floating Point Encodings

_OOI -Normalized |—Denorm u E+Denorm | +Normalized +|OO

| | taln: | |
NaN / \ NaN
— -0 +0 —

23

Introduction to Computer Systems, Peking University

Today: Floating Point

|
|
m Example and properties
|

24

Introduction to Computer Systems, Peking University

Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit

= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
® normalized, denormalized
= representation of 0, NaN, infinity

25

Introduction to Computer Systems, Peking University

v=(-1)M2F
norm: E = exp — Bias

Dynamic Range (s=0 only)

S exp frac E Value denorm: E = 1 — Bias

0 0000 00O -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized © 0000 010 -6 2/8*1/64 = 2/512 (-1)°(0+1/4)*2-¢
numbers

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 000 -6 8/8*1/64 = 8/512 smallest norm

0 0001 001 -6 9/8*1/64 = 9/512 (-1)0(1+1/8)*26

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 000 0 8/8*1 =1
numbers 0 0111 o001 0 9/8%*1 = 9/8 closest to 1 above

0 0111 o010 0 10/8*1 = 10/8

0 1110 110 7 14/8*128 = 224

0

1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/a inf

26

Introduction to Computer Systems, Peking University

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= {=2 fraction bits S exp frac

" Bjasis231-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

/8values

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

27

Introduction to Computer Systems, Peking University

Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= {=2 fraction bits S exp frac

" Biasis 3 1 3-bits 2-bits

—_—— ——— — et
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

28

Introduction to Computer Systems, Peking University

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= Allbits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider -0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

29

Introduction to Computer Systems, Peking University

Today: Floating Point

Rounding, addition, multiplication

30

Introduction to Computer Systems, Peking University

Floating Point Operations: Basic Idea

B X +£y Round (x + y)

B X Xf Yy Round (x X y)

m Basicidea
® First compute exact result
" Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into £frac

31

Rounding

m Rounding Modes (illustrate with S rounding)

$1.40 S$1.60 $1.50 $2.50

= Towards zero S1
" Round down (-o0) S1
= Round up (+x) S2

= Nearest Even* (default) S1

S1
S1
S2
S2

Introduction to Computer Systems, Peking University

S1
S1
S2
$2 1

S2
S2
S3
$2V

-$1.50
_$1

_$ 1
—$2

*Round to nearest, but if half-way in-between then round to nearest even

32

Introduction to Computer Systems, Peking University

Closer Look at Round-To-Even

m Default Rounding Mode
= Hard to get any other kind without dropping into assembly

= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-

estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values

= Round so that least significant digit is even

= E.g., round to nearest hundredth

7.8949999
7.8950001
7.8950000
7.8850000

7.89
7.90
7.90
7.88

(Less than half way)
(Greater than half way)
(Half way—round up)
(Half way—round down)

33

Introduction to Computer Systems, Peking University

Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is 0
= “Half way” when bits to right of rounding position = 100...2

m Examples
" Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded
Value
23/32 10.00011> 10.00: (<1/2—down) 2
23/16 10.001102 10.012 (>1/2—up) 21/4
27/8 10.111002 11.002 (1/2—up) 3

25/8 10.101002 10.102 (1/2—down) 21/2

34

Introduction to Computer Systems, Peking University

FP Multiplication

m (-1)t M1 28! x (-1)2 M2 2%2
m Exact Result: (-1)°M 2F

= Signs: s1/7s2
= Significand M: M1 x M2
" Exponent E: E1+E2

m Fixing

= |f M > 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit £rac precision

= Implementation

= Biggest chore is multiplying significands

4 bit significand: 1.010*22 x 1.110*23 = 10.0011*2>
= 1.00011*2% = 1.001%*2°

35

Introduction to Computer Systems, Peking University

Floating Point Addition

(-1)t M1 28! + (-1)%2 M2 2F2

"Assume E1 > E2 Get binary points lined up
Exact Result: (-1)° M 2° — E1-E2
=Sign s, significand M: (—1)"T M1

= Result of signed align & add
"Exponent E: E1 + (~1)*2 M2
Fixing
=|f M > 2, shift M right, increment E (-1)*M

=if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range
="Round M to fit £rac precision

1.010*%22 + 1.110*23 = (0.1010 + 1.1100) *23
= 10.0110 * 23 = 1.00110 * 24 = 1.010 * 24

36

Introduction to Computer Systems, Peking University

Mathematical Properties of FP Add

m Compare to those of Abelian Group

" Closed under addition? Yes
= But may generate infinity or NaN

= Commutative? Yes

= Associative? No

= Overflow and inexactness of rounding
» (3.1441e10)-1e10 = 0, 3.14+(1el0-1e10)

3.14
= 0O is additive identity? Yes
= Every element has additive inverse? Almost

= Yes, except for infinities & NaNs

m Monotonicity
" a>b = a+c>b+c?

Almost

= Except for infinities & NaNs

37

Introduction to Computer Systems, Peking University

Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication? Yes
= But may generate infinity or NaN

Multiplication Commutative? Yes

Multiplication is Associative? No

= Possibility of overflow, inexactness of rounding

= Ex: (1e20*1e20) *1e-20=1nf, 1e20* (1e20*1e-20)=1e20
1 is multiplicative identity? Yes

Multiplication distributes over addition? No
= Possibility of overflow, inexactness of rounding
» 1e20*% (1e20-1e20)=0.0, 1e20*1e20 - 1e20*1e20 =NaN

m Monotonicity
" a>b &c>0 =>a*c=>b *c? Almost

= Except for infinities & NaNs

38

Introduction to Computer Systems, Peking University

Today: Floating Point

Floating point in C

39

Introduction to Computer Systems, Peking University

Floating Point in C

m C Guarantees Two Levels

=float single precision
"double double precision

m Conversions/Casting

= Casting between int, £loat, and double changes bit
representation

" double/float > int

= Truncates fractional part

= Like rounding toward zero

= Not defined when out of range or NaN: Generally sets to TMin
" int 2 double

= Exact conversion, as long as int has £ 53 bit word size
"int - float

= Will round according to rounding mode
40

Introduction to Computer Systems, Peking University

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

*d*d> 0.0
(d+£f) -d ==

x == (int) (float) x X

x == (int) (double) x V4

int x = _; f == (float) (double) £ V4
float f = . d == (double) (float) d X
double d = ..; £ ==-(-£); v
- 2/3 == 2/3.0 X

Assume neither -+ d<0.0 = ((d*2) < 0.0) V4
d nor £ is NaN - d> £ = -f > -d V4
v/

X

41

Introduction to Computer Systems, Peking University

Summary

m |EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2¢

m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded

m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

42

Introduction to Computer Systems, Peking University

Additional Slides

43

Introduction to Computer Systems, Peking University

Creating Floating Point Number

m Steps s exp frac

*= Normalize to have leading 1 _ _
L _ 1 4-bits 3-bits
= Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011

138 10001010

63 00111111

44

Normalize

m Requirement

= Set binary point so that numbers of form 1.xxxxx

= Adjust all to have leading one

S exp

frac

1 4-bits

= Decrement exponent as shift left

Value
128

15
17
19
138
63

Binary

10000000
00001101
00010001
00010011
10001010
00111111

Fraction

L

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

Exponent

O 9 & b W J

3-bits

Introduction to Computer Systems, Peking University

45

Rounding

1 . BBGRXXX

Guard bit: LSB of result _/ '

Sticky bit: OR of remaining bits

Round bit: 15t bit removed

m Round up conditions

®" Round=1, Sticky=1-—>0.5
® Guard =1, Round =1, Sticky =0 — Round to even

Value
128
15
17
19
138
63

Fraction

s

.0000000
.1010000
.0001000
.0011000
.0001010
.1111100

GRS
000
100
010
110
011
111

Incr?
N

K K K 2 Z

Introduction to Computer Systems, Peking University

Rounded

1.
.101
.000
.010
.001
10.

e W

000

000

46

Introduction to Computer Systems, Peking University

Postnormalize

m Issue
" Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64

47

Interesting Numbers

Description exp
m Zero 00...00
m Smallest Pos. Denorm. 00...00

" Single=1.4x10™%

" Double =4.9 x 10732

Largest Denormalized 00...00
" Single=~1.18 x 1073

" Double=2.2x107308

Smallest Pos. Normalized 00...01
= Just larger than largest denormalized

One 01..11
Largest Normalized 11...10

= Single = 3.4 x 10

" Double = 1.8 x 103%

frac
00...00
00...01

11...11

00...00

00...00
11...11

Introduction to Computer Systems, Peking University

{single,double}

Numeric Value

0.0
2-{23,52} y 2-{126,1022}

(1.0 —) x 2~ {126,022}

1.0 x 2~ {126,1022}

1.0
(2.0 — €) x 2{127,2023}

48

