
Introduction to Computer Systems, Peking University

Bits, Bytes, and Integers

Introduction to Computer Systems
2nd Lecture, Sep 10, 2025

Instructors
Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao
Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Binary Representations
¢ Base 2 Number Representation

§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104 as 1.11011011011012 X 213

¢ Why Computers Use Binary?

Binary is the most practical system to use!

0.0V
0.5V

2.8V
3.3V

0 1 0

Introduction to Computer Systems, Peking University

Encoding Byte Values
¢ Byte = 8 bits
§ Binary 000000002 to 111111112

§ Decimal: 010 to 25510

§ Hexadecimal 0016 to FF16

§ Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Why 8 bit?

Introduction to Computer Systems, Peking University

Data Representations
C Data Type Typical 32-bit Intel IA32 x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 4 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 4 8

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Boolean Algebra
¢ Developed by George Boole in 19th Century
§ Algebraic representation of logic

§ Encode “True” as 1 and “False” as 0

And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

Introduction to Computer Systems, Peking University

General Boolean Algebras
¢ Operate on Bit Vectors
§ Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

Introduction to Computer Systems, Peking University

Example: Representing & Manipulating Sets
¢ Representation

§ Width w bit vector represents subsets of {0, …, w–1}
§ aj = 1 if j ∈ A

§ 01101001 { 0, 3, 5, 6 }
§ 76543210

§ 01010101 { 0, 2, 4, 6 }
§ 76543210

¢ Operations
§ & Intersection 01000001 { 0, 6 }
§ | Union 01111101 { 0, 2, 3, 4, 5, 6 }
§ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
§ ~ Complement 10101010 { 1, 3, 5, 7 }

Introduction to Computer Systems, Peking University

Bit-Level Operations in C

¢ Operations &, |, ~, ^ Available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as bit vectors
§ Arguments applied bit-wise

¢ Examples (Char data type)
§ ~0x41 ➙ 0xBE

§ ~010000012 ➙ 101111102
§ ~0x00 ➙ 0xFF

§ ~000000002 ➙ 111111112
§ 0x69 & 0x55 ➙ 0x41

§ 011010012 & 010101012 ➙ 010000012
§ 0x69 | 0x55 ➙ 0x7D

§ 011010012 | 010101012➙ 011111012

Introduction to Computer Systems, Peking University

Contrast: Logic Operations in C
¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01
§ p && *p (avoids null pointer access)

Watch out for && vs. &
(and || vs. |)…
one of the more common
oopsies in
C programming

Introduction to Computer Systems, Peking University

Shift Operations
¢ Left Shift: x << y
§ Shift bit-vector x left y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left

¢ Undefined Behavior
§ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Encoding Integers

short int x = 15213;
short int y = -15213;

¢ C short 2 bytes long

¢ Sign Bit
§ For 2’s complement, most significant bit indicates sign

§ 0 for nonnegative
§ 1 for negative

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å
Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Introduction to Computer Systems, Peking University

Two-complement: Simple Example

10 =
-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Introduction to Computer Systems, Peking University

Encoding Example (Cont.)
x = 15213: 00111011 01101101
y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

å

Introduction to Computer Systems, Peking University

Numeric Ranges
¢ Unsigned Values

§ UMin = 0
000…0

§ UMax = 2w – 1
111…1

¢ Two’s Complement Values
§ TMin = –2w–1

100…0
§ TMax = 2w–1 – 1

011…1
¢ Other Values

§ Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Introduction to Computer Systems, Peking University

Values for Different Word Sizes

¢ Observations
§ |TMin | = TMax + 1

§ Asymmetric range
§ UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

¢ C Programming
§ #include <limits.h>
§ Declares constants, e.g.,

§ ULONG_MAX
§ LONG_MAX
§ LONG_MIN

§ Values platform specific

Introduction to Computer Systems, Peking University

Unsigned & Signed Numeric Values
¢ Equivalence

§ Same encodings for nonnegative
values

¢ Uniqueness
§ Every bit pattern represents

unique integer value
§ Each representable integer has

unique bit encoding

¢ Þ Can Invert Mappings
§ U2B(x) = B2U-1(x)

§ Bit pattern for unsigned
integer

§ T2B(x) = B2T-1(x)
§ Bit pattern for two’s comp

integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

¢ Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

Introduction to Computer Systems, Peking University

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Introduction to Computer Systems, Peking University

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Introduction to Computer Systems, Peking University

+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Introduction to Computer Systems, Peking University

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned

§ Ordering Inversion
§ Negative ® Big Positive

Introduction to Computer Systems, Peking University

Signed vs. Unsigned in C
¢ Constants

§ By default are considered to be signed integers
§ Unsigned if have “U” as suffix

0U, 4294967259U

¢ Casting
§ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

§ Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

Introduction to Computer Systems, Peking University

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

¢ Expression Evaluation
§ If there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned
§ Including comparison operations <, >, ==, <=, >=
§ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
2147483647 2147483648U
2147483647 (int) 2147483648U

Casting Surprises

Introduction to Computer Systems, Peking University

Summary
Casting Signed ↔ Unsigned: Basic Rules
¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
§ int is cast to unsigned!!

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Sign Extension
¢ Task:

§ Given w-bit signed integer x
§ Convert it to w+k-bit integer with same value

¢ Rule:
§ Make k copies of sign bit:
§ X ¢ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk

Introduction to Computer Systems, Peking University

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

Introduction to Computer Systems, Peking University

Sign Extension Example

¢ Converting from smaller to larger integer data type
¢ C automatically performs sign extension

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Introduction to Computer Systems, Peking University

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Introduction to Computer Systems, Peking University

Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)

§ Unsigned: zeros added
§ Signed: sign extension
§ Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
§ Unsigned/signed: bits are truncated
§ Result reinterpreted
§ Unsigned: mod operation
§ Signed: similar to mod

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Unsigned Addition

¢ Standard Addition Function
§ Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+ 1101 0101

E9
+ D5

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

233
+ 213

unsigned char

Introduction to Computer Systems, Peking University

Unsigned Addition

¢ Standard Addition Function
§ Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

233
+ 213
446
190

unsigned char

Introduction to Computer Systems, Peking University

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

¢ Integer Addition
§ 4-bit integers u, v
§ Compute true sum

Add4(u , v)
§ Values increase linearly

with u and v
§ Forms planar surface

Add4(u , v)

u

v

Introduction to Computer Systems, Peking University

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

¢ Wraps Around
§ If true sum ≥ 2w

§ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Introduction to Computer Systems, Peking University

Two’s Complement Addition

¢ TAdd and UAdd have Identical Bit-Level Behavior
§ Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

§ Will give s == t

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

-23
+ -43
-66
-66

Introduction to Computer Systems, Peking University

TAdd Overflow

¢ Functionality
§ True sum requires w+1

bits
§ Drop off MSB
§ Treat remaining bits as

2’s comp. integer

–2w –1–1

–2w

0

2w –1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

Introduction to Computer Systems, Peking University

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

¢ Values
§ 4-bit two’s comp.
§ Range from -8 to +7

¢ Wraps Around
§ If sum ³ 2w–1

§ Becomes negative
§ At most once

§ If sum < –2w–1

§ Becomes positive
§ At most once

TAdd4(u , v)

u

v
PosOver

NegOver

Introduction to Computer Systems, Peking University

Characterizing TAdd

¢ Functionality
§ True sum requires w+1 bits
§ Drop off MSB
§ Treat remaining bits as 2’s

comp. integer

TAddw (u,v) =
u + v + 2w-1 u + v < TMinw
u + v TMinw £ u + v £ TMaxw
u + v - 2w-1 TMaxw < u + v

ì

í
ï

î ï

(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w

Introduction to Computer Systems, Peking University

Multiplication
¢ Goal: Computing Product of w-bit numbers x, y

§ Either signed or unsigned

¢ But, exact results can be bigger than w bits
§ Unsigned: up to 2w bits

§ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1
§ Two’s complement min (negative): Up to 2w-1 bits

§ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

§ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

§ Result range: x * y ≤ (–2w–1) 2 = 22w–2

¢ So, maintaining exact results…
§ would need to keep expanding word size with each product computed
§ is done in software, if needed

§ e.g., by “arbitrary precision” arithmetic packages

Introduction to Computer Systems, Peking University

Unsigned Multiplication in C

¢ Standard Multiplication Function
§ Ignores high order w bits

¢ Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001
* 1101 0101
1100 0001 1101 1101

1101 1101

E9
* D5
C1DD
DD

233
* 213
49629
221

Introduction to Computer Systems, Peking University

Signed Multiplication in C

¢ Standard Multiplication Function
§ Ignores high order w bits
§ Some of which are different for signed

vs. unsigned multiplication
§ Lower bits are the same

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23
* -43

989
-35

1110 1001
* 1101 0101
0000 0011 1101 1101

1101 1101

E9
* D5
03DD
DD

Introduction to Computer Systems, Peking University

Power-of-2 Multiply with Shift
¢ Operation

§ u << k gives u * 2k

§ Both signed and unsigned

¢ Examples
§ u << 3 == u * 8
§ (u << 5) – (u << 3)== u * 24

§ Most machines shift and add faster than multiply
§ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Important Lesson:
Trust Your Compiler!

Introduction to Computer Systems, Peking University

Unsigned Power-of-2 Divide with Shift
¢ Quotient of Unsigned by Power of 2

§ u >> k gives ë u / 2k û
§ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary Point

0

0 0 0•••0

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Arithmetic: Basic Rules
¢ Addition:

§ Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

§ Unsigned: addition mod 2w

§ Mathematical addition + possible subtraction of 2w

§ Signed: modified addition mod 2w (result in proper range)
§ Mathematical addition + possible addition or subtraction of 2w

¢ Multiplication:
§ Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level
§ Unsigned: multiplication mod 2w

§ Signed: modified multiplication mod 2w (result in proper range)

Introduction to Computer Systems, Peking University

Why Should I Use Unsigned?
¢ Don’t use without understanding implications

§ Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];

§ Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .

Introduction to Computer Systems, Peking University

Counting Down with Unsigned
¢ Proper way to use unsigned as loop index

unsigned i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];

¢ See Robert Seacord, Secure Coding in C and C++
§ C Standard guarantees that unsigned addition will behave like modular

arithmetic
§ 0 – 1 à UMax

¢ Even better
size_t i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];

§ Data type size_t defined as unsigned value with length = word size
§ Code will work even if cnt = UMax
§ What if cnt is signed and < 0?

Introduction to Computer Systems, Peking University

Why Should I Use Unsigned? (cont.)
¢ Do Use When Performing Modular Arithmetic

§ Multiprecision arithmetic

¢ Do Use When Using Bits to Represent Sets
§ Logical right shift, no sign extension

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Byte-Oriented Memory Organization

¢ Programs refer to data by address
§ Conceptually, envision it as a very large array of bytes

§ In reality, it’s not, but can think of it that way
§ An address is like an index into that array

§ and, a pointer variable stores an address

¢ Note: system provides private address spaces to each “process”
§ Think of a process as a program being executed
§ So, a program can clobber its own data, but not that of others

• • •
00
••
•0

FF
••
•F

Introduction to Computer Systems, Peking University

Machine Words
¢ Any given computer has a “Word Size”
§ Nominal size of integer-valued data

§ and of addresses

§ Until recently, most machines used 32 bits (4 bytes) as word size
§ Limits addresses to 4GB (232 bytes)

§ Increasingly, machines have 64-bit word size
§ Potentially, could have 18 EB (exabytes) of addressable memory
§ That’s 18.4 X 1018

§ Machines still support multiple data formats
§ Fractions or multiples of word size
§ Always integral number of bytes

Introduction to Computer Systems, Peking University

Word-Oriented Memory Organization
¢ Addresses Specify Byte

Locations
§ Address of first byte in word
§ Addresses of successive words differ

by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Introduction to Computer Systems, Peking University

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Introduction to Computer Systems, Peking University

Byte Ordering
¢ So, how are the bytes within a multi-byte word ordered in

memory?
¢ Conventions
§ Big Endian: Sun, PPC Mac, Internet

§ Least significant byte has highest address
§ Little Endian: x86, ARM processors running Android, iOS, and

Windows
§ Least significant byte has lowest address

Introduction to Computer Systems, Peking University

Byte Ordering Example

¢ Example
§ Variable x has 4-byte value of 0x01234567
§ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Introduction to Computer Systems, Peking University

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32

Introduction to Computer Systems, Peking University

Examining Data Representations
¢ Code to Print Byte Representation of Data
§ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
int i;
for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);
printf("\n");

}

Introduction to Computer Systems, Peking University

show_bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

Introduction to Computer Systems, Peking University

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Introduction to Computer Systems, Peking University

char S[6] = "18213";

Representing Strings

¢ Strings in C
§ Represented by array of characters
§ Each character encoded in ASCII format

§ Standard 7-bit encoding of character set
§ Character “0” has code 0x30

– Digit i has code 0x30+I
§ man ascii for code table

§ String should be null-terminated
§ Final character = 0

¢ Compatibility
§ Byte ordering not an issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00

Introduction to Computer Systems, Peking University

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings
¢ Disassembly
§ Text representation of binary machine code
§ Generated by program that reads the machine code

¢ Example Fragment

¢ Deciphering Numbers
§ Value: 0x12ab

§ Pad to 32 bits: 0x000012ab

§ Split into bytes: 00 00 12 ab

§ Reverse: ab 12 00 00

Introduction to Computer Systems, Peking University

Summary
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting

¢ Representations in memory, pointers, strings
¢ Summary

Introduction to Computer Systems, Peking University

Integer C Puzzles

x < 0 Þ ((x*2) < 0)
ux >= 0

x & 7 == 7 Þ (x<<30) < 0
ux > -1
x > y Þ -x < -y
x * x >= 0
x > 0 && y > 0 Þ x + y > 0
x >= 0 Þ -x <= 0
x <= 0 Þ -x >= 0
(x|-x)>>31 == -1
ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

