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Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
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Binary Representations
¢ Base 2 Number Representation

§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104 as 1.11011011011012 X 213

¢ Why Computers Use Binary?

Binary is the most practical system to use!

0.0V
0.5V

2.8V
3.3V

0 1 0
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Encoding Byte Values
¢ Byte = 8 bits
§ Binary 000000002 to 111111112

§ Decimal: 010 to 25510

§ Hexadecimal 0016 to FF16

§ Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

Why 8 bit?
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Data Representations
C Data Type Typical 32-bit Intel IA32 x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 4 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 4 8
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Boolean Algebra
¢ Developed by George Boole in 19th Century
§ Algebraic representation of logic

§ Encode “True” as 1 and “False” as 0

And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both
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General Boolean Algebras
¢ Operate on Bit Vectors
§ Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010
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Example: Representing & Manipulating Sets
¢ Representation

§ Width w bit vector represents subsets of {0, …, w–1}
§ aj = 1 if j ∈ A

§ 01101001 { 0, 3, 5, 6 }
§ 76543210

§ 01010101 { 0, 2, 4, 6 }
§ 76543210

¢ Operations
§ &    Intersection 01000001 { 0, 6 }
§ |     Union 01111101 { 0, 2, 3, 4, 5, 6 }
§ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
§ ~ Complement 10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C

¢ Operations &,  |,  ~,  ^ Available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as bit vectors
§ Arguments applied bit-wise

¢ Examples (Char data type)
§ ~0x41 ➙ 0xBE

§ ~010000012 ➙ 101111102
§ ~0x00 ➙ 0xFF

§ ~000000002 ➙ 111111112
§ 0x69 & 0x55 ➙ 0x41

§ 011010012 & 010101012 ➙ 010000012
§ 0x69 | 0x55 ➙ 0x7D

§ 011010012 | 010101012➙ 011111012
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Contrast: Logic Operations in C
¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41  ➙ 0x00
§ !0x00  ➙ 0x01
§ !!0x41  ➙ 0x01

§ 0x69 && 0x55  ➙ 0x01
§ 0x69 || 0x55  ➙ 0x01
§ p && *p (avoids null pointer access)

Watch out for && vs. & 
(and || vs. |)… 
one of the more common 
oopsies in 
C programming
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Shift Operations
¢ Left Shift: x << y
§ Shift bit-vector x left y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left

¢ Undefined Behavior
§ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
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Encoding Integers

short int x =  15213;
short int y = -15213;

¢ C short 2 bytes long

¢ Sign Bit
§ For 2’s complement, most significant bit indicates sign

§ 0 for nonnegative
§ 1 for negative

B2T (X ) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X ) = xi ×2
i

i=0

w-1

å
Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
y -15213 C4 93 11000100 10010011 
 



Introduction to Computer Systems,  Peking University 

Two-complement: Simple Example

10 = 
-16 8 4 2 1

0 1 0 1 0

-10 = 
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10
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Encoding Example (Cont.)
x =      15213: 00111011 01101101
y =     -15213: 11000100 10010011

Weight 15213 -15213 
1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
 

B2T (X ) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

å
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Numeric Ranges
¢ Unsigned Values

§ UMin = 0
000…0

§ UMax = 2w – 1
111…1

¢ Two’s Complement Values
§ TMin = –2w–1

100…0
§ TMax = 2w–1 – 1

011…1
¢ Other Values

§ Minus 1
111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16
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Values for Different Word Sizes

¢ Observations
§ |TMin | = TMax + 1

§ Asymmetric range
§ UMax = 2 * TMax + 1 

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 

 
 

¢ C Programming
§ #include <limits.h>
§ Declares constants, e.g.,

§ ULONG_MAX
§ LONG_MAX
§ LONG_MIN

§ Values platform specific
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Unsigned & Signed Numeric Values
¢ Equivalence

§ Same encodings for nonnegative 
values

¢ Uniqueness
§ Every bit pattern represents 

unique integer value
§ Each representable integer has 

unique bit encoding

¢ Þ Can Invert Mappings
§ U2B(x)  =  B2U-1(x)

§ Bit pattern for unsigned 
integer

§ T2B(x)  =  B2T-1(x)
§ Bit pattern for two’s comp 

integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
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¢ Integers
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T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

¢ Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret
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Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U
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Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned

§ Ordering Inversion
§ Negative ® Big Positive
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Signed vs. Unsigned in C
¢ Constants

§ By default are considered to be signed integers
§ Unsigned if have “U” as suffix

0U, 4294967259U

¢ Casting
§ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

§ Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;
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0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

¢ Expression Evaluation
§ If there is a mix of unsigned and signed in single expression, 

signed values implicitly cast to unsigned
§ Including comparison operations <, >, ==, <=, >=
§ Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
0 0U
-1 0
-1 0U
2147483647 -2147483647-1 
2147483647U -2147483647-1 
-1 -2 
(unsigned)-1 -2 
2147483647 2147483648U 
2147483647 (int) 2147483648U 

Casting Surprises
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Summary
Casting Signed ↔ Unsigned: Basic Rules
¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
§ int is cast to unsigned!!
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¢ Integers
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§ Summary
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Sign Extension
¢ Task:

§ Given w-bit signed integer x
§ Convert it to w+k-bit integer with same value

¢ Rule:
§ Make k copies of sign bit:
§ X ¢ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk
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Sign Extension: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

10 = 

-32 16 8 4 2 1

0 0 1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 = 

Positive number Negative number
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Sign Extension Example

¢ Converting from smaller to larger integer data type
¢ C automatically performs sign extension

short int x =  15213;
int ix = (int) x; 
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011
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Truncation: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

6 = 

-8 4 2 1

0 1 1 0

Sign change

2 = 

-16 8 4 2 1

0 0 0 1 0

2 = 

-8 4 2 1

0 0 1 0

-6 = 

-16 8 4 2 1

1 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6
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Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)

§ Unsigned: zeros added
§ Signed: sign extension
§ Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
§ Unsigned/signed: bits are truncated
§ Result reinterpreted
§ Unsigned: mod operation
§ Signed: similar to mod
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¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
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Unsigned Addition

¢ Standard Addition Function
§ Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+  1101 0101

E9
+ D5

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

233
+ 213

unsigned char
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Unsigned Addition

¢ Standard Addition Function
§ Ignores carry output

¢ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+  1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

233
+ 213
446
190

unsigned char
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0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

¢ Integer Addition
§ 4-bit integers u, v
§ Compute true sum 

Add4(u , v)
§ Values increase linearly 

with u and v
§ Forms planar surface

Add4(u , v)

u

v
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0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

¢ Wraps Around
§ If true sum ≥ 2w

§ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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Two’s Complement Addition

¢ TAdd and UAdd have Identical Bit-Level Behavior
§ Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

§ Will give s == t

• • •
• • •

u
v+

• • •u + v
• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001
+  1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

-23
+ -43
-66
-66
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TAdd Overflow

¢ Functionality
§ True sum requires w+1

bits
§ Drop off MSB
§ Treat remaining bits as 

2’s comp. integer

–2w –1–1

–2w

0

2w –1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver
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-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

¢ Values
§ 4-bit two’s comp.
§ Range from -8 to +7

¢ Wraps Around
§ If sum ³ 2w–1

§ Becomes negative
§ At most once

§ If sum < –2w–1

§ Becomes positive
§ At most once

TAdd4(u , v)

u

v
PosOver

NegOver
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Characterizing TAdd

¢ Functionality
§ True sum requires w+1 bits
§ Drop off MSB
§ Treat remaining bits as 2’s 

comp. integer

TAddw (u,v) =
u + v + 2w-1 u + v < TMinw
u + v TMinw £ u + v £ TMaxw
u + v - 2w-1 TMaxw < u + v

ì 

í 
ï 

î ï 

(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w
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Multiplication
¢ Goal: Computing Product of w-bit numbers x, y

§ Either signed or unsigned

¢ But, exact results can be bigger than w bits
§ Unsigned: up to 2w bits

§ Result range: 0 ≤ x * y ≤ (2w – 1) 2 =  22w – 2w+1 + 1
§ Two’s complement min (negative): Up to 2w-1 bits

§ Result range: x * y ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1

§ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

§ Result range: x * y ≤ (–2w–1) 2 =  22w–2

¢ So, maintaining exact results…
§ would need to keep expanding word size with each product computed
§ is done in software, if needed

§ e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

¢ Standard Multiplication Function
§ Ignores high order w bits

¢ Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001
*          1101 0101
1100 0001 1101 1101

1101 1101

E9
*  D5
C1DD
DD

233
*   213
49629
221
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Signed Multiplication in C

¢ Standard Multiplication Function
§ Ignores high order w bits
§ Some of which are different for signed 

vs. unsigned multiplication
§ Lower bits are the same

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23
*   -43

989
-35

1110 1001
*          1101 0101
0000 0011 1101 1101

1101 1101

E9
*  D5
03DD
DD
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Power-of-2 Multiply with Shift
¢ Operation

§ u << k gives u * 2k

§ Both signed and unsigned

¢ Examples
§ u << 3 == u * 8
§ (u << 5) – (u << 3)== u * 24

§ Most machines shift and add faster than multiply
§ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Important Lesson:
Trust Your Compiler!



Introduction to Computer Systems,  Peking University 

Unsigned Power-of-2 Divide with Shift
¢ Quotient of Unsigned by Power of 2

§ u >> k gives  ë u / 2k û
§ Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u
2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary Point

0

0 0 0•••0
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Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
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Arithmetic: Basic Rules
¢ Addition:

§ Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

§ Unsigned: addition mod 2w

§ Mathematical addition + possible subtraction of 2w

§ Signed: modified addition mod 2w (result in proper range)
§ Mathematical addition + possible addition or subtraction of 2w

¢ Multiplication:
§ Unsigned/signed: Normal multiplication followed by truncate, 

same operation on bit level
§ Unsigned: multiplication mod 2w

§ Signed: modified multiplication mod 2w (result in proper range)
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Why Should I Use Unsigned?
¢ Don’t use without understanding implications

§ Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];

§ Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .
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Counting Down with Unsigned
¢ Proper way to use unsigned as loop index

unsigned i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];

¢ See Robert Seacord, Secure Coding in C and C++
§ C Standard guarantees that unsigned addition will behave like modular 

arithmetic
§ 0 – 1 à UMax

¢ Even better
size_t i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];

§ Data type size_t defined as unsigned value with length = word size
§ Code will work even if cnt = UMax
§ What if cnt is signed and < 0?
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Why Should I Use Unsigned? (cont.)
¢ Do Use When Performing Modular Arithmetic

§ Multiprecision arithmetic

¢ Do Use When Using Bits to Represent Sets
§ Logical right shift, no sign extension
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Today: Bits, Bytes, and Integers
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
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Byte-Oriented Memory Organization

¢ Programs refer to data by address
§ Conceptually, envision it as a very large array of bytes

§ In reality, it’s not, but can think of it that way
§ An address is like an index into that array

§ and, a pointer variable stores an address

¢ Note: system provides private address spaces to each “process”
§ Think of a process as a program being executed
§ So, a program can clobber its own data, but not that of others

• • •
00
••
•0

FF
••
•F
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Machine Words
¢ Any given computer has a “Word Size”
§ Nominal size of integer-valued data

§ and of addresses

§ Until recently, most machines used 32 bits (4 bytes) as word size
§ Limits addresses to 4GB (232 bytes)

§ Increasingly, machines have 64-bit word size
§ Potentially, could have 18 EB (exabytes) of addressable memory
§ That’s 18.4 X 1018

§ Machines still support multiple data formats
§ Fractions or multiples of word size
§ Always integral number of bytes
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Word-Oriented Memory Organization
¢ Addresses Specify Byte 

Locations
§ Address of first byte in word
§ Addresses of successive words differ 

by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

0000

0004

0008

0012

0000

0008
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8
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Byte Ordering
¢ So, how are the bytes within a multi-byte word ordered in 

memory?
¢ Conventions
§ Big Endian: Sun, PPC Mac, Internet

§ Least significant byte has highest address
§ Little Endian: x86, ARM processors running Android, iOS, and 

Windows
§ Least significant byte has lowest address



Introduction to Computer Systems,  Peking University 

Byte Ordering Example

¢ Example
§ Variable x has 4-byte value of 0x01234567
§ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32
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Examining Data Representations
¢ Code to Print Byte Representation of Data
§ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
int i;
for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);
printf("\n");

}
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show_bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
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Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00
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char S[6] = "18213";

Representing Strings

¢ Strings in C
§ Represented by array of characters
§ Each character encoded in ASCII format

§ Standard 7-bit encoding of character set
§ Character “0” has code 0x30

– Digit i has code 0x30+I
§ man ascii for code table

§ String should be null-terminated
§ Final character = 0

¢ Compatibility
§ Byte ordering not an issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00
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Address Instruction Code Assembly Rendition
8048365: 5b                   pop    %ebx
8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings
¢ Disassembly
§ Text representation of binary machine code
§ Generated by program that reads the machine code

¢ Example Fragment

¢ Deciphering Numbers
§ Value: 0x12ab

§ Pad to 32 bits: 0x000012ab

§ Split into bytes: 00 00 12 ab

§ Reverse: ab 12 00 00
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Summary
¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting

¢ Representations in memory, pointers, strings
¢ Summary
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Integer C Puzzles

x < 0 Þ ((x*2) < 0)
ux >= 0

x & 7 == 7 Þ (x<<30) < 0
ux > -1
x > y Þ -x < -y
x * x >= 0
x > 0 && y > 0 Þ x + y > 0
x >= 0 Þ -x <= 0
x <= 0 Þ -x >= 0
(x|-x)>>31 == -1
ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization


