Bits, Bytes, and Integers

Introduction to Computer Systems
2"d Lecture, Sep 10, 2025

Instructors

Class 1: Chen Xiangqun, Liu Xianhua
Class 2: Guan Xuetao

Class 3: Lu Junlin

Introduction to Computer Systems, Peking University

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

m Representing information as bits
H

Introduction to Computer Systems, Peking University

Binary Representations

m Base 2 Number Representation
" Represent 15213,,as511101101101101,
= Represent 1.20,,as1.0011001100110011[0011]...,
= Represent 1.5213 X 10* as 1.1101101101101, X 213

m Why Computers Use Binary?

- 0 > * 1 » <0~
3.3V— vdd
K“N\/\
2.8V— —
0.5V— [
N_J
0.0V— vss

Binary is the most practical system to use!

Introduction to Computer Systems, Peking University

Encoding Byte Values

bi '6§><ﬁ
m Byte =8 bits Q@* 0°°\€3‘°°
" Binary 000000002t0 111111112 0 10 10000
= Decimal: O10 to 25510 1 1110001
. 2 |2 [0010
" Hexadecimal 0016 to FFis 3 [3 0011
. . 4 4 | 0100
Base 16 number representation 5 15 0101
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 6 | 6 | 0110
)) 7 7 0111
= Write FA1D37B1sin C as 8 1 8 | 1000
— OxFA1D378B 9 |9 | 1001
A (10| 1010
— Oxfald37b B (11| 1011
C (12| 1100
D |13 1101
E |14 1110
Why 8 bit? F |15] 1111

Data Representations

Introduction to Computer Systems, Peking University

C Data Type Typical 32-bit Intel IA32 x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 4 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 4 3

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

|
m Bit-level manipulations

Introduction to Computer Systems, Peking University

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
m A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
& |0 1 | 10 1
00 O O(0 1
110 1 111 1
Not Exclusive-Or (Xor)
m “A=1when A=0 s AAB =1 when either A=1 or B=1, but not both
~| A0 1
01 O[O0 1
110 111 0

Introduction to Computer Systems, Peking University

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Introduction to Computer Systems, Peking University

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Introduction to Computer Systems, Peking University

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C
= Apply to any “integral” data type
- long, int, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise

m Examples (Char data type)

= ~0x41 — OxBE
= ~(010000012 — 101111102
= ~0x00 — OxFF
= ~000000002 — 111111112
= 0Ox69 & 0x55 — 0x41
= 011010012 & 010101012 — 010000012
= 0x69 | 0x55 — 0x7D

- 011010012 | 010101012 — 011111012

Introduction to Computer Systems, Peking University

Contrast: Logic Operations in C

m Contrast to Logical Operators

= 8&, I, !
= View 0 as “False”
= Anything nonzero as “True” Watch out for && vs. & \
= Always returnOor 1 (and ” VS. I)

= Early termination

s Examples (char data type) one of the more common

= 10x41 — 0x00 oopsies in
= 10x00 — 0x01 C programming
= 110x41 — 0x01 K /

0x69 && 0x55 — 0x01
0x69 || 0x55 — 0x01

p & *p (avoids null pointer access)

Introduction to Computer Systems, Peking University

Shift Operations
m Left Shift: x << y Argument x| 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

= Throw away extra bits on right Argument x| 10100010

= Logical shift << 3 00010000

= Fill with 0’s on left Log. >> 2 | 00101000
= Arithmetic shift

= Replicate most significant bit on left

Arith.>> 2| 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

m Integers
= Representation: unsigned and signed

Introduction to Computer Systems, Peking University

Encoding Integers

Unsigned Two’s Complement
w-1) w—2 .
BRUKX) = Y x -2 BT(X) = —x,,2" "+ x -2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y 15213| c4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Two-complement: Simple Example

-16 8 4 2 1

10= 0 1 0 1 O 8+2 10

-16 8 4 2 1
-10=1 0 1 1 O -16+4+2 = -10

Encoding Example (Cont.)

x = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16 .
32 1 32 0 O B2T(X) = —x, 2" + > x -2’
64 1 64 0 0 =0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 409 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Introduction to Computer Systems, Peking University

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

Ugf)lc? 0 S0 = TMin = =2w1
100...0
= w_
UMax 2" = TMax = 2%1-1
111...1 011..1
m Other Values
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 000000O0O
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 00OOOOOOO

Introduction to Computer Systems, Peking University

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 " Hinclude <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 " ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Unsigned & Signed Numeric Values

% B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
0010 2 2 .

m Uniqueness

0011 3 3
0100 P 1 = Every bit pattern represents
0101 5 5 unique integer value
0110 6 6 = Each representable integer has
0111 7 7 unique bit encoding
1090 & 8 = = Can Invert Mappings
= : - = U2B(x) = B2U(x)
1010 10 -6 X = X
1011 11 _5 = Bit pattern for unsigned
1100 12 —4 integer
1101 13 -3 = T2B(x) = B2T(x)
1110 14 —2 = Bit pattern for two’s comp

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

m Integers

|
= Conversion, casting
|
|

Mapping Between Signhed & Unsigned

Two’s Complement = Unsigned
X *| T2B 7 B2U > UX

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

ux U2B *| B2T > X
X

v

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
keep bit representations and reinterpret

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

T2U

1000

U2T

1001

1010

1011

1100

1101

1110

1111

Mapping Sighed <> Unsigned

Unsigned

0

A

WO JdJ|on|OI|bd]|W|DN|PRF

=
o

=
=

=
N

=
w

=
(1Y

=
(8

Mapping Sighed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 < +/- 16' 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Introduction to Computer Systems, Peking University

Relation between Signed & Unsigned

Two’s Complement = Unsigned
X > T2B 7 B2U > UX

Maintain Same Bit Pattern

w—1 0
ux [F[F[F[__e e [+[+[+

x [[H[+ ees [+[+][+

Large negative weight
becomes
Large positive weight

Introduction to Computer Systems, Peking University

Conversion Visualized

m 2’s Comp. > Unsigned

= QOrdering Inversion ® UMax

o —_
" Negative — Big Positive UMax -1

/_:. TMax + 1 | unsigned
o TMax Range

- TMax @

2’s Complement
Range

&Q

. TMin

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

Introduction to Computer Systems, Peking University

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Introduction to Computer Systems, Peking University

Summary
Casting Sighed €= Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

H
H
m Integers

|
|
= Expanding, truncating
|

Introduction to Computer Systems, Peking University

Sign Extension
m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

= X = Xpq e Xope1 s Xse1 » X2 »+-0» X

k copies of MSB < w >
o 00
X' () o0 0

Positive number

-16 8 4 2

10 = 1 0 1
-3 16 8 4 2
10 = O % 1 0 1

-10

-10

Introduction to Computer Systems, Peking University

Sign Extension: Simple Example

Negative number

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213(FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0

-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U

I
o

Introduction to Computer Systems, Peking University

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
" Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

m Integers

= Addition, negation, multiplication, shifting

[] [] []
Unsighed Addition

Operands: w bits U ——
+ v o0 0
True Sum: w+1 bits 3+ v p—
Discard Carry: w bits UAdd,(u , v) see \
a
. . o o°°\(?23‘°°‘\\
m Standard Addition Function 5 T0 10000
" |gnores carry output ; ; 88?3
m Implements Modular Arithmetic =2 oto0
s = UAdd,(u,v) = u+v mod 2% 2 2 8123
7 | 7 | 0111
unsigned char 1110 1001 E9 233 S o
+ 1101 0101 + D5 + 213 A [10] 1010
B |11 | 1011
C [12 [1100
— — D [13 | 1101
E |14 | 1110
F |15 | 1111

Introduction to Computer Systems, Peking University

Unsighed Addition

Operands: w bits U -
+ v o0 0
True Sum: w+1 bits y+ v —
Discard Carry: w bits UAddW(u) V) see \
2
- . & o°°\(?23‘°°d
m Standard Addition Function 5T T 0060
" |gnores carry output ; ; 8823
m Implements Modular Arithmetic =2 oto0
s = UAdd,(u,v) = u+v mod?2¥ 2 2 gﬂé
7 |7 | 0111
unsigned char 1110 1001 E9 233 S o
+ 1101 0101 + D5 + 213 A |10 | 1010
B |11 | 1011
1 1011 1110 1BE 446 C |12 | 1100
— D |13 | 1101
1011 1110 BE 190 E |14 | 1110
F |15 | 1111

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers u,v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

Introduction to Computer Systems, Peking University

Visualizing Unsigned Addition

m Wraps Around Overflow
= |f true sum > 2% \
= At most once UAdd,(u, v)

True Sum
2W+1-

Overflow
2W -+ j- ‘|'

O e

Modular Sum

Introduction to Computer Systems, Peking University

Two’s Complement Addition

Operands: w bits u 000
+ v o 00

True Sum: w+1 bits
u + V ()
Discard Carry: w bits TAdd,(u , v) oo

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+ v
" Willgive s == 1110 1001 E9 -23
+ 1101 o101 + D5 + -43
1 1011 1110 _1BE -66

1011 1110 BE -66

TAdd Overflow

m Functionality

True sum requires w+1
bits
Drop off MSB

Treat remaining bits as
2’s comp. integer

0111..

0 100...

0 000...

1011..

1 000...

Introduction to Computer Systems, Peking University

True Sum
2W_1 —
PosO
> TAdd Result
2w-1 + T 011..1
0O T T 000..0
—2w-1l-1 + - 100..0
| NegOver

Introduction to Computer Systems, Peking University

Visualizing 2’s Complement Addition

NegOver

m Values
= 4-bit two’s comp.

= Range from -8 to +7

m Wraps Around
= |f sum > 2wt
= Becomes negative
= At most once
" |f sum <—2w-1
= Becomes positive
= At most once

u 6 _ PosOver

Introduction to Computer Systems, Peking University

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v)
®" True sum requires w+1 bits >0 \
= Drop off MSB Vv
" Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

r

u+v+2» u+v<IMin, (NegOver)
TAdd,(u,v) = Ju+v TMin,, <u+v<TMax,,

\u+v— I T'Max,, <u+V (PosOver)

Introduction to Computer Systems, Peking University

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w —-2w*l + 1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (2w 1)*(2w1-1) = —22w-24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (—2w1)2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

Introduction to Computer Systems, Peking University

Unsigned Multiplication in C

u o 00
Operands: w bits
* o000
%
True Product: 2*w bits U * V s 0 see
UMUlt u.,v oo 0
Discard w bits: w bits l)
m Standard Multiplication Function
= |gnores high order w bits
m Implements Modular Arithmetic
UMult,(u,v)= u -v mod2¥
1110 1001 E9 233
* 1101 0101 * D5 * 213
1100 0001 1101 1101 C1DD 49629

1101 1101 DD 221

Introduction to Computer Systems, Peking University

Signed Multiplication in C

u o 00
Operands: w bits
* o000
\%
True Product: 2*w bits U * V s 0 see
TMUlt u.,v oo 0
Discard w bits: w bits l)
m Standard Multiplication Function
= |gnores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
= Lower bits are the same
1110 1001 E9 -23
* 1101 0101 * D5 * -43
0000 0011 1101 1101 03DD 989

1101 1101 DD -35

Introduction to Computer Systems, Peking University

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
u o 0 0
Operands: w bits
* 2k Ol eee |0l1]0] eee |0OIlO
True Product: w+k bits 1 = 2% eoee 0] eee |0f0
Discard k bits: w bits UMult,(u,2%) [eee 0] eee J0JO

TMult, (u , 25)
m Examples

" u << 3 == u * 8
" (u<<K b)) - (u<K 3)== u * 24

= Most machines shift and add faster than multiply

Important Lesson:
Trust Your Compiler!

= Compiler generates this code automatically

Introduction to Computer Systems, Peking University

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= u > kgves Lu / 2]
= Uses logical shift

k
U cee see Binary Point
Operands:
l 2k Ol eee |0l1]0] eee |00
Division: 3/ 2k |0] eee]0]O cee l/ cee
Result: | 44/ 2k | [0l eee o]0 coo
Division [Computed Hex Binary

x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6(00011101 10110110

x >> 4 950.8125 950 03 B6(00000011 10110110

x >> 8 | 59.4257813 59 00 3B 00000000 00111011

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

H
H
m Integers

= Summary

Introduction to Computer Systems, Peking University

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

Introduction to Computer Systems, Peking University

Why Should | Use Unsigned?

m Don’t use without understanding implications
= Easy to make mistakes

unsigned 1i;
for (i = cnt-2; i >= 0; 1i--)
af[i] += a[i+l];

= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Introduction to Computer Systems, Peking University

Counting Down with Unsigned

m Proper way to use unsigned as loop index

unsigned 1i;
for (i = cnt-2; i < cnt; i--)

af[i] += a[i+l];
m See Robert Seacord, Secure Coding in C and C++
= (CStandard guarantees that unsigned addition will behave like modular
arithmetic
= 0—1 > UMax

m Even better
size t i;
for (i = cnt-2; i < cnt; i--)
af[i] += a[i+l1];
" Datatype size t defined as unsigned value with length = word size
= Code will work even if ent = UMax

" Whatif ent is sighed and < 0?

Introduction to Computer Systems, Peking University

Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
® Logical right shift, no sign extension

Introduction to Computer Systems, Peking University

Today: Bits, Bytes, and Integers

m Integers

m Representations in memory, pointers, strings

Introduction to Computer Systems, Peking University

Byte-Oriented Memory Organization

00. QQ.

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
® An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

Introduction to Computer Systems, Peking University

Machine Words

m Any given computer has a “Word Size”
= Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" Increasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 1018

= Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

Introduction to Computer Systems, Peking University

Word-Oriented Memory Organization

32-bit 64-bit Bvies Addr

m Addresses Specify Byte Words Words 7 '

Locations 0000

. . Addr

= Address of first byte in word = 0001

: : 0000 0002

= Addresses of successive words differ Addr 003
by 4 (32-bit) or 8 (64-bit) -

0000 0004

Adr 0005

0004 0006

0007

0008

Adr 0009

0008 Addr 0010

= 0011

0008 0012

Adr 0013

0012 0014

0015

Introduction to Computer Systems, Peking University

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16

pointer 4 8 8

Introduction to Computer Systems, Peking University

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Introduction to Computer Systems, Peking University

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Introduction to Computer Systems, Peking University

Decimal: 15213

Representing Integers |Binary: o011 1011 0110 1101

Hex: 3 B 6 =2
int A = 15213; long int C = 15213;
IA32, x86-64 Sun
1A32 x86-64 Sun
6D
3B
00
00

int B = -15213;
IA32, x86-64 Sun

T~

Two’s complement representation

Introduction to Computer Systems, Peking University

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, int len) {
int i;
for (1 = 0; i < len; i++)
printf ("$p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X : Print Hexadecimal

Introduction to Computer Systems, Peking University

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7£f71dbt 00

Introduction to Computer Systems, Peking University

Representing Pointers

int B = -15213;
int *P = &B;
Sun IA32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

Introduction to Computer Systems, Peking University

Representing Strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCIl format IA32 Sun
= Standard 7-bit encoding of character set 31 | > 31
= Character “0” has code 0x30 38 | | 38
— Digit i has code 0x30+/ 32 | | 32
= man ascii for code table 31 | S 31
= String should be null-terminated 33 | J 33
= Final character=0 00 | J 00

m Compatibility
= Byte ordering not an issue

Introduction to Computer Systems, Peking University

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code
= Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 00 00 00 00 cmpl x0,0x28 (%$ebx)

m Deciphering Numbers

= Value: O0x12ab
= Padto 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00

Introduction to Computer Systems, Peking University

Summary

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
= Addition, negation, multiplication, shifting
m Representations in memory, pointers, strings

= Summary

Introduction to Computer Systems, Peking University

Integer C Puzzles

Initialization

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

x <0

ux >= 0

X & == 7
ux > -1

X >y

Xx * x>0

x>06&& vy >0
x>0

x <=0

(x| -x)>>31 == -1
ux >> 3 == ux/8
x >> 3 == x/8

x & (x-1) '=0

b 44

((x*2) < 0)

(x<<30) < O

-X <

x+y >0

-X <=

-X >=

4

0
0

XX I XX XXXXCNNX

