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Logistics

• Assignment 2: to release on 4/11 (this Friday evening), due on 
4/26 11:59PM (Saturday) 

• Some functions are required to be implemented without for 
loop. 

• If 1 day (0 - 24 hours) past the deadline, 15% off 
• If 2 day (24 - 48 hours) past the deadline, 30% off 
• Zero credit if more than 2 days.



The History: ImageNet Challenge Winners 



VGGNet

Why use smaller filters? (3 3 conv)×
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• Squeeze-and-Excitation Network (SENet) 
• Wide Residual Networks 
• ResNeXt 
• DenseNet

Beyond ResNet
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• Squeeze-and-Excitation Network (SENet) 
• Wide Residual Networks 
• ResNeXt 
• DenseNet

Beyond ResNet



DenseNet



• Squeeze-and-Excitation Network (SENet) 
• Wide Residual Networks 
• ResNeXt 
• DenseNet 

• Attention-based networks: ViT, SwinTransformer 
• MLP-based networks 

• MobileNet —> efficiency

Beyond ResNet



Efficient Networks



• Squeeze-and-Excitation Network (SENet) 
• Wide Residual Networks 
• ResNeXt 
• DenseNet 

• ViT, swinTransformer, MLP-based networks 

• MobileNet —> efficiency 

• Neural architecture search

Beyond ResNet



Learning to Search for Network Architecture



Segmentation



• Classic definition: image classification is to categorize an 
image into several known classes (N).

Image Classification
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• Goal: identify groups of pixels that go together 
• Care about spatial extent 
• But not a global label

Image Segmentation

49Slides credit: Steve Seitz, Kristen Grauman



We Care About Semantics
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Classification + localization Instance Segmentation

Semantic Segmentation Semantic Instance Segmentation



• Semantic segmentation 
is a dense labeling 
problem. Or,  per-pixel 
classification problem. 

• Sharing similar 
assumptions to 
classification: classes 
are pre-defined.

Semantic Segmentation
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Semantic Segmentation
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ℒCE = mean(H(P, Q)) = − mean( ∑
x∈𝒳

P(x)log Q(x))



Semantic Segmentation using Sliding Window
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Semantic Segmentation using CNN
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Semantic Segmentation using Fully Convolution
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Semantic Segmentation using Fully Convolution
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We need to reduce resolutions.



Auto-Encoder
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• AE encodes itself into a latent z 
• AE then decodes the latent z back to 

itself 



Auto-Encoder

58

• Understanding AE 
• Informa9on bo:leneck: the 

dimension of z space is much smaller 
than that of x 

• Get rid of redundant informa9on via 
dimension reduc9on 

• The first step to all advanced 
segmenta9on networks 



Semantic Segmentation using Fully Convolution
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Semantic Segmentation using Fully Convolution
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In-Network Upsampling: Unpooling
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In-Network Upsampling: Max Unpooling
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Learnable Upsampling
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Learnable Upsampling
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Learnable Upsampling
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Learnable Upsampling
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Learnable Upsampling
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Learnable Upsampling: Transposed Convolution
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Learnable Upsampling: Transposed Convolution
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Learnable Upsampling: Transposed Convolution
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Learnable Upsampling: Transposed Convolution
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Learnable Upsampling: Transposed Convolution
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Convolution as Matrix Multiplication
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Convolution as Matrix Multiplication
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[x y z 0 0 0
0 0 0 x y z]



Semantic Segmentation: Fully Convolutional
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• Lower memory cost

Advantage of Bottleneck
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Recap of Receptive Field
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• Lower memory cost 

• Larger receptive field and thus better global context 
• Convolution on a smaller feature map correspond to conv 

with a big kernel size at the original resolution

Advantage of Bottleneck
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Improving FCN
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What needs to be stored in the bottleneck?



Improving FCN
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What needs to be stored in the bottleneck? 
• Global context 



Improving FCN
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What needs to be stored in the bottleneck? 
• Global context 
• Per-pixel spatial information, especially around 

the boundary 



UNet Structure
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• Skip link between 
the feature maps 
from the encoder 
and the decoder 
with the same 
resolution. 

• Now what needs to 
store in the 
bottleneck?



UNet Structure
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• The skip link makes 
shortcut from the 
inputs to the 
outputs 

• Bottleneck: no 
need to memorize 
the whole image 
but only provides 
global context



• A top-down approach 

• Bottleneck structure:  
• Large receptive field and provides global context 
• Get rid of redundant information 
• Lower the computation cost 

• Skip link: 
• Assist final segmentation 
• Avoid memorization

Summary of Semantic Segmentation

84



DeepLab V3
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General Dense Prediction: UperNet
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• Pixel accuracy: simply report the percent of pixels in the image 
which were correctly classified. 

• However, may be misleading when the class representation is 
small within the image, as the measure will be biased in mainly 
reporting how well you identify negative case (ie. where the 
class is not present).

Evaluation Metrics: Pixel Accuracy
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• Intersection over Union

Evaluation Metrics: Intersection over Union
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Alternative Loss: Soft IoU Loss
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Rahman, Md Atiqur, and Yang Wang. "Optimizing intersection-over-union in deep neural networks for image 
segmentation." International symposium on visual computing. Springer, Cham, 2016



• For each class, we can compute the metrics above by finding 
the intersection between the ground truth and predicted one-
hot encoded masks for each class.  

• Metrics can be examined class-by-class, or by taking the 
average over all the classes, to get a mean IoU.

Evaluation Metrics: mIoU
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Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 9,  
3D Vision I

Introduction to Computer Vision


