Introduction to Computer Vision

Lecture 8 - Deep Learning V

Prof. He Wang

Embodied Perception and InteraCtion’kalb



« Assignment 2: to release on 4/11 (this Friday evening), due on
4/26 11:59PM (Saturday)

* Some functions are required to be implemented without for
loop.

 If 1 day (0 - 24 hours) past the deadline, 15% off
o |If 2 day (24 - 48 hours) past the deadline, 30% off
« Zero credit if more than 2 days.



The History: ImageNet Challenge Winners

30 282

16.4

8 layers

2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)

11.7

8 layers

2013

Zeiler &
Fergus

Deeper Networks

152 layers| |152 layers| (152 layers

\

19 layers| |22 layers

7.3

6.7

2014 2014
Simonyan & Szegedy et al

Zisserman (VGG) (GooglLeNet)

5.1
3.6 3 2.3 .
E = =

2015 2016 2017 Human
He et al Shao et al Hu et al Russakovsky et al
(ResNet) (SENet)




VGGNet

| Softmax |
| FC 1000 |
[ Softmax 1 | FC 4096 ]
| FC 1000 ] FC 4096
Small filters, Deeper networks e —
| Poo |
8 layers (AlexNet)
-> 16 - 19 layers (VGG 16Net) | i ———
| Softmax |
Only 3x3 CONV stride 1, pad 1 =
and 2x2 MAX POOL stride 2 C i — | = 1
l Poo ]
11.7% top 5 error in ILSVRC’13 (ZFNet) s SRS ) W (N
->7.3% top 5 error in ILSVRC’14
[ Pooi ] [ Poo ] | P J
| Input ] | Input ] | Input |
AlexNet VGG16 VGG19

Why use smaller filters? (3X3 conv)



Receptive Field

32 /
An activation map is a 28x28 sheet of neuron
28 outputs:
>O 1. Each is connected to a small region in the input
2. All of them share parameters

“6x5 filter” -> “5x5 receptive field for each neuron”
AB

32




VGGNet

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

Softmax

| |

| FC 1000 |
| Softmax ] | FC 4096 ]
| FC 1000 | | FC 4096 ]
l FC 4096 | | Poo |
| FC 4096 |
[ Poo ]

| Pool |
| Poo |
| Poo ] | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

| Softmax |
[__Fcio00 ]
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 ] | Poo |
[_fcaoos ]
| Poo |
Q: What is the effective receptive field —
of three 3x3 conv (stride 1) layers? T
| Softmax |
[ FC 1000 |
Input A1 A2 A3 L_fcao0e ]
l FC 4096 | l Poo | Poo ]
| Poo |
| Poo | | Poo |
= | Poo |
| Pool | | Poo | | Poo! |

~_

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3) [ T 1 [ T 1 | T 1
AlexNet VGG16 VGG19




Receptive Field

l Softmax |
[C_Fciooo__]
[ Softrmax || FC 4096 |
l FC 1000 || FC 4096 ]
l FC 4096 ] | Poo ]
[_fcaoe ]
| Poo |
Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers? —
l Poo |
| Softmax |
Input A1 A2 A3 L_rcom |
l FC 4096 ]
_| [ ] ! | FC 4096 | | Poo | | Poo ]
:__ ’_ __-'\Nh‘ I Pool ]
- I I — = | Poo | | Poo |
] | Pool |
[ Pool l [ Poo ] I Poo ]
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3) T ] Co 1 o]

AlexNet VGG16 VGG19



Receptive Field

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

Input A1 A2 A3
P
i T+
| AEmmiE
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
l FC 4096 | | Poo |
| FC 4096 |
| Pool |

| Pool |
l Poo |
| Poo | | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

Input A1 A2 A3 T
F~——1_] T 1 | FC 1000 |
l FC 4096 |
e B ] | FC 4096 ]
| | | Pool |
HN

] | Poo! |
| Pool |

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3) :

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 ] | Poo ]
| FC 4096 |
| Pool |

| Pool |
l Pool |
| Poo | | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

| Softmax |
| FC 1000 |
| Softmax ] | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 | | Poo |
[ FC 4096 ]
[ Poo ]
Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers? —
| Poo |
| Softmax |
Input A1 A2 A3 rFcion
— | FC 4096 |
= L | ! [caoee ] l Poo ] Poo ]
| r —t— l Poo |
| I
— _l | | Poo | | Poo |
__l | Poo |
| Pool | | Poo | | Poo |
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)
| Input | | Input | B | Input |

AlexNet VGG16 VGG19



Receptive Field

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

[7X7]

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax ] | FC 4096 ]
| FC 1000 | | FC 4096 ]
| FC 4096 ] | Poo ]
| FC 4096 |
[ Poo ]

| Pool |
| Poo |
| Poo ] | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C?) vs.
7°C? for C channels per layer

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax ] | FC 4096 ]
| FC 1000 | | FC 4096 ]
| FC 4096 ] | Poo ]
| FC 4096 |
[ Poo ]

| Pool |
| Poo |
| Poo ] | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

INPUT: [224x224x3]  memory: 224*224*3=150K params:0 (Not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Poo

Poo

Poo

Input

fc8
fc7
fcé

conv5-3
conv5-2

conv5-1

conv4-3
conv4-2

conv4-1

conv3-2

conv3-1

conv2-2

conv2-1

convi-2

convi-1

VGG16 /

Common names



ResNet

30 282

16.4

shallow

8 layers

2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)

“Revolution of Depth”

152 layers| [152 layers| |152 layers
11.7 [191ayers| |22 layers
7.3 6.7
8 layers ,
i 2.3
2013 2014 2014 2015 2016 2017
Zeiler & Simonyan & Szegedy et a He et al Shao et al Hu et al
Fergus  Zisserman (VGG) (GooglLeNet} (ResNet) (SENet)

5.1

Human

Russakovsky et al



ResNet

| J
| FC 1000 J
| ]
| ]

3x3 conv, 512

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample F(x) \relu - X
spatially using stride 2 identity
(/2 in each dimension)

- Additional conv layer at
the beginning (stem)

T relu

F(x) + x

X
Residual block

| Pool |

-4——— Beginning
[ Inout ] conv layer




ResNet

Total depths of 18, 34, 50,
101, or 152 layers for
ImageNet

| Softmax ]
| FC 1000 ]
| Pool ]
| ]
| ]
l J

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

| Pool ]

L Input |




ResNet

[He et al., 2015]

28x28x256
output

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GooglLeNet)

28x28x256
input



ResNet

[He et al., 2015]

28x28x256
output

1x1 conv, 256 filters projects
back to 256 feature maps

For deeper networks (28x28x256)
(ResNet-50+), use “bottleneck”
layer to improve efficiency 3x3 conv operates over
(similar to GooglLeNet) only 64 featrre maps
1x1 conv, 64 filters to
project to 28x28x64
28x28x256

input



Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used



Experimental Results
- Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (quote yann) 152-layer nets

D twork hi * ImageNet Detection: 16% better than 2nd
) eeper Neworks now achieve * ImageNet Localization: 27% better than 2nd

lower tralnlng err.or as expected * COCO Detection: 11% better than 2nd
- Swept 1st place in all ILSVRC * COCO Segmentation: 12% better than 2nd
and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than "human
performance” (Russakovsky 2014)



Beyond ResNet

* Squeeze-and-Excitation Network (SENet)
* Wide Residual Networks

* ResNeXt

* DenseNet



VGGNet

| Softmax |
| FC 1000 |
[ Softmax 1 | FC 4096 ]
| FC 1000 ] FC 4096
Small filters, Deeper networks e —
| Poo |
8 layers (AlexNet)
-> 16 - 19 layers (VGG 16Net) | i ———
| Softmax |
Only 3x3 CONV stride 1, pad 1 =
and 2x2 MAX POOL stride 2 C i — | = 1
l Poo ]
11.7% top 5 error in ILSVRC’13 (ZFNet) s SRS ) W (N
->7.3% top 5 error in ILSVRC’14
[ Pooi ] [ Poo ] | P J
| Input ] | Input ] | Input |
AlexNet VGG16 VGG19

Why use smaller filters? (3X3 conv)



Receptive Field

32 /
An activation map is a 28x28 sheet of neuron
28 outputs:
>O 1. Each is connected to a small region in the input
2. All of them share parameters

“6x5 filter” -> “5x5 receptive field for each neuron”
AB

32




VGGNet

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

Q: What is the effective receptive field of
three 3x3 conv (stride 1) layers?

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

Softmax

| |

| FC 1000 |
| Softmax ] | FC 4096 ]
| FC 1000 | | FC 4096 ]
l FC 4096 | | Poo |
| FC 4096 |
[ Poo ]

| Pool |
| Poo |
| Poo ] | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

| Softmax |
[__Fcio00 ]
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 ] | Poo |
[_fcaoos ]
| Poo |
Q: What is the effective receptive field —
of three 3x3 conv (stride 1) layers? T
| Softmax |
[ FC 1000 |
Input A1 A2 A3 L_fcao0e ]
l FC 4096 | l Poo | Poo ]
| Poo |
| Poo | | Poo |
= | Poo |
| Pool | | Poo | | Poo! |

~_

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3) [ T 1 [ T 1 | T 1
AlexNet VGG16 VGG19




Receptive Field

l Softmax |
[C_Fciooo__]
[ Softrmax || FC 4096 |
l FC 1000 || FC 4096 ]
l FC 4096 ] | Poo ]
[_fcaoe ]
| Poo |
Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers? —
l Poo |
| Softmax |
Input A1 A2 A3 L_rcom |
l FC 4096 ]
_| [ ] ! | FC 4096 | | Poo | | Poo ]
:__ ’_ __-'\Nh‘ I Pool ]
- I I — = | Poo | | Poo |
] | Pool |
[ Pool l [ Poo ] I Poo ]
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3) T ] Co 1 o]

AlexNet VGG16 VGG19



Receptive Field

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

Input A1 A2 A3
P
i T+
| AEmmiE
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
l FC 4096 | | Poo |
| FC 4096 |
| Pool |

| Pool |
l Poo |
| Poo | | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

Input A1 A2 A3 T
F~——1_] T 1 | FC 1000 |
l FC 4096 |
e B ] | FC 4096 ]
| | | Pool |
HN

] | Poo! |
| Pool |

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3) :

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 ] | Poo ]
| FC 4096 |
| Pool |

| Pool |
l Pool |
| Poo | | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

| Softmax |
| FC 1000 |
| Softmax ] | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 | | Poo |
[ FC 4096 ]
[ Poo ]
Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers? —
| Poo |
| Softmax |
Input A1 A2 A3 rFcion
— | FC 4096 |
= L | ! [caoee ] l Poo ] Poo ]
| r —t— l Poo |
| I
— _l | | Poo | | Poo |
__l | Poo |
| Pool | | Poo | | Poo |
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)
| Input | | Input | B | Input |

AlexNet VGG16 VGG19



Receptive Field

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

[7X7]

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax ] | FC 4096 ]
| FC 1000 | | FC 4096 ]
| FC 4096 ] | Poo ]
| FC 4096 |
[ Poo ]

| Pool |
| Poo |
| Poo ] | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers
has same effective receptive field as
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C?) vs.
7°C? for C channels per layer

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax ] | FC 4096 ]
| FC 1000 | | FC 4096 ]
| FC 4096 ] | Poo ]
| FC 4096 |
[ Poo ]

| Pool |
| Poo |
| Poo ] | Poo |
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |



Receptive Field

INPUT: [224x224x3]  memory: 224*224*3=150K params:0 (Not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Poo

Poo

Poo

Input

fc8
fc7
fcé

conv5-3
conv5-2

conv5-1

conv4-3
conv4-2

conv4-1

conv3-2

conv3-1

conv2-2

conv2-1

convi-2

convi-1

VGG16 /

Common names



ResNet

30 282

16.4

shallow

8 layers

2010 2011 2012
Lin et al Sanchez &  Krizhevsky et al
Perronnin (AlexNet)

“Revolution of Depth”

152 layers| [152 layers| |152 layers
11.7 [191ayers| |22 layers
7.3 6.7
8 layers ,
i 2.3
2013 2014 2014 2015 2016 2017
Zeiler & Simonyan & Szegedy et a He et al Shao et al Hu et al
Fergus  Zisserman (VGG) (GooglLeNet} (ResNet) (SENet)

5.1

Human

Russakovsky et al



ResNet

| J
| FC 1000 J
| ]
| ]

3x3 conv, 512

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample F(x) \relu - X
spatially using stride 2 identity
(/2 in each dimension)

- Additional conv layer at
the beginning (stem)

T relu

F(x) + x

X
Residual block

| Pool |

-4——— Beginning
[ Inout ] conv layer




ResNet

Total depths of 18, 34, 50,
101, or 152 layers for
ImageNet

| Softmax ]
| FC 1000 ]
| Pool ]
| ]
| ]
l J

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

| Pool ]

L Input |




ResNet

[He et al., 2015]

28x28x256
output

For deeper networks
(ResNet-50+), use “bottleneck”
layer to improve efficiency
(similar to GooglLeNet)

28x28x256
input



ResNet

[He et al., 2015]

28x28x256
output

1x1 conv, 256 filters projects
back to 256 feature maps

For deeper networks (28x28x256)
(ResNet-50+), use “bottleneck”
layer to improve efficiency 3x3 conv operates over
(similar to GooglLeNet) only 64 featrre maps
1x1 conv, 64 filters to
project to 28x28x64
28x28x256

input



Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used



Experimental Results
- Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202
on Cifar)

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (quote yann) 152-layer nets

D twork hi * ImageNet Detection: 16% better than 2nd
) eeper Neworks now achieve * ImageNet Localization: 27% better than 2nd

lower tralnlng err.or as expected * COCO Detection: 11% better than 2nd
- Swept 1st place in all ILSVRC * COCO Segmentation: 12% better than 2nd
and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than "human
performance” (Russakovsky 2014)



Beyond ResNet

* Squeeze-and-Excitation Network (SENet)
* Wide Residual Networks

* ResNeXt

* DenseNet



Densely Connected Convolutional Networks (DenseNet),

Softmax

|

[Huang et al. 2017] t I FC |

| Pool |

- Dense blocks where each layer is —L [ Dense Blook3 ]
connected to every other layer in f

feedforward fashion [T —

T

Concat I

- Alleviates vanishing gradient,
strengthens feature propagation,

Dense Block 2 |

encourages feature reuse )
- Showed that shallow 50-layer Concat
network can outperform deeper [ DenseBiock 1_]

152 layer ResNet

Input I Input |

Dense Block



Beyond ResNet

* Squeeze-and-Excitation Network (SENet)
» Wide Residual Networks

* ResNeXt
 DenseNet

» Attention-based networks: ViT, SwinTransformer
 MLP-based networks

* MobileNet —> efficiency



Efficient Networks

MobileNets: Efficient Convolutional Neural Networks for
Mobile Applications [Howardetal. 2017]

- Depthwise separable

: hN
convolutions replace Satehiorm
standard convolutions by Pool
f - : BatchNorm .
actorizing them into a C2HW Pointwise
depthwise convolution and a Pool convolutions
i BatchNorm
1x1 convolutlop_  9CZHW
- Much more efficient, with =
little loss in accuracy Standard network .
. WI
- Follow-up MobileNetV2 work  Total compute:ac2Hw ~ 9CHW corfvolutions
in 2018 (Sandler et al.) T

- ShuffleNet: Zhang et al,

Total compute:9CHW + C?HW
CVPR 2018



Beyond ResNet

* Squeeze-and-Excitation Network (SENet)

* Wide Residual Networks

* ResNeXt

* DenseNet

 ViT, swinTransformer, MLP-based networks

* MobileNet —> efficiency

 Neural architecture search



Learning to Search for Network Architecture

Neural Architecture Search with Reinforcement Learning (NAS)
[Zoph et al. 2016] Sample architecture A

with probability p

- “Controller” network that learns to design a good [ 1
network architecture (output a string The controller (RNN) et
corresponding to network design) e

- lterate: [ J

1) Sample an architecture from search space Compute gradient of p anc

2) Train the architecture to get a “reward” R tie Eoiralier
corresponding to accuracy (e [T [ | (TSR] [Swae | [Nompe [T

3) Compute gradient of sample probability, and %5 5 Lo S L b BRh Ll
scale by R to perform controller parameter — _L,r 1 Lr L L bl bl bl bl 1
update (i.e. increase likelihood of good EE R R EE O R R
architecture being sampled, decrease g O o | . 8 —*4
likelihood of bad architecture) R s Al S— T — . T



Segmentation



Image Classification

* Classic definition: image classification is to categorize an
image into several known classes (N).

Model Output: which class
- 1| cat
0| dog
.9 — |2~
b ~ ’ E
4 | 0 | elephant
l
l

Parameters or weights 5



Image Segmentation

 Goal: identify groups of pixels that go together
 Care about spatial extent
* But not a global label

49



We Care About Semantics

Classification + localization Instance Segmentation

Semantic Segmentation Semantic Instance Segmentation 30



Semantic Segmentation

* Semantic segmentation Classificati Semantic
is a dense labeling assiiication Segmentation
problem. Or, per-pixel

classification problem.

 Sharing similar
assumptions to
classification: classes
are pre-defined.

GRASS, :
TREE, SKY

Y Y

No spatial extent No objects, just pixels

- DN /

51



Semantic Segmentation

’ At test time, classify each pixel of a new image.

TREE, SKY, ...

Paired training data: for each training image,
each pixel is labeled with a semantic category.

ZL g = mean(H(P, Q)) = — mean( Z P(x)log O(x))
xeX

52



Semantic Segmentation using Sliding Window

Full image
BF- e

......

Impossible to classify without context

Q: how do we include context?

53



Semantic Segmentation using CNN

Full image

N/ '."':?,

An intuitive idea: encode the entire image with conv net, and do semantic segmentation
on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but
semantic segmentation requires the output size to be the same as input size.

54



Semantic Segmentation using Fully Convolution

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!

4 Conv Conv Conv Conv argmax
Input: _ J .
3 x fl x W Y Scores: Predictions:
CxHxW HxW
Convolutions:
DxHxW

55



Semantic Segmentation using Fully Convolution

A N A )
- A > ’ - -
e -' - P ~...
s - ] 1 )
L T\
: ¢ :\.‘! ] : ~
‘ml‘:’;j_‘u.,

‘ﬁ’ {.,aggg.« i

-

Problem: convolutions at

original image resolution will

be very expensive ...

Input: \
3XxXHxW Y

Design a network with only convolutional layers
without downsampling operators to make predictions

for pixels all at once!

Conv

J

Convolutions:
DxHxW

Conv

Scores:
CxHxW

We need to reduce resolutions.

argmax
—

Predictions:
HxW

56



Auto-Encoder

Reconstructed | 7 e AE encodes itself into a latent z
input data e AE then decodes the latent z back to
I Decoder itself
Features 2
I Encoder
4

Input data

57



Auto-Encoder

e Understanding AE

Reconstructed | 7
input data e Information bottleneck: the
Decoder dimension of z space is much smaller
I than that of x
Features Z e Get rid of redundant information via
dimension reduction
I Encoder e The first step to all advanced
Input data T segmentation networks

58



Semantic Segmentation using Fully Convolution

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: :
02 x H/4 x W/4 D, x H/4 x W/4
/ Low-res:
D3 x H/4 x W/4
High-res: High-res: CXHxW Predictions:
3XxHxXW D, x H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation™, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

59



Semantic Segmentation using Fully Convolution

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 2??
convolution

Med-res: Med-res:

D2 x H/4 x W/4 D2 x H/4 x W/4
Low-res:
D3 x H/4 x W/4
High-res: High-res: CXHxW Predictions:
3XxXHxW D, x H/2 x W/2 D, x H/I2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation™, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

60



In-Network Upsampling: Unpooling

Nearest Neighbor
1 | 2
3 4

Input: 2 x 2

Output: 4 x 4

“Bed of Nails”

1 2

3 4

Input: 2 x 2

0|2

010

0| 4

0|0 O
Output: 4 x 4

61



In-Network Upsampling: Max Unpooling

Max Pooling

: / /\\ Max Unpooling
Remember which element was max! \ \Use positions from
112186 3 \ pooling layer
35|21 5 6 [ ] A2
- - > = uaf - '1> l' 'u'
."I l‘ '| 3 "‘1 4
112121 78 Rest of the network —
7 3 4 8 l" "I " |||
' l 'n
‘ |
Input: 4 x 4 Output: 2 x 2 | " Input: 2 x 2

Corresponding pairs of

downsampling and |

upsampling layers

0O 0 2

1 0

0 O

0O 0 4
Output: 4 x 4

62



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

63



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

64



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

65



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

66



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Dot product
between filter
and input

Output: 2 x 2

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between
movement in input and
output

We can interpret strided

convolution as “learnable
downsampling”.

67



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

68



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

- Filter moves 2 pixels in
Input gives the output for every one
weight for pixel in the input

filter
Stride gives ratio between

movement in output and
input
Input: 2 x 2 Output: 4 x 4

69



Learnable Upsampling: Transposed Convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

Filter moves 2 pixels in

Input gives the output for every one
weight for pixel in the input
filter

Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4

70



Learnable Upsampling: Transposed Convolution

Sum where

Q: Why is it called 3 x 3 transpose convolution, stride 2 pad 1 output overlaps

transpose
convolution?

Filter moves 2 pixels in

Input gives the output for every one
weight for pixel in the input
filter

Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4

71



Learnable Upsampling: Transposed Convolution

Input Filte

a
b

|

.

—

_—
~—

Output

aX

ay
az

+|bX

bz

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

72



Convolution as Matrix Multiplication

We can express convolution in
terms of a matrix multiplication

rxa=Xa

0
a
x yz 000]|0b _[ ay + bz ]
[OOOXYZ] cl  |bx+cy+dz
d
_O_

Example: 1D conv, kernel
size=3, stride=2, padding=1

73



Convolution as Matrix Multiplication

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
E &0 = X0 T+l g=X1¢g
0] x 0]  ar |
a y 0 ay
x yz 00O0][b] ay + bz z x| |a|l |az+ bz
000xyz||c| |brt+cy+dz 0 y| |b by
d 0 =z bz
Ll 0 0] 0

Example: 1D conv, kernel

: . : Example: 1D transpose conv, kernel
size=3, stride=2, padding=1

size=3, stride=2, padding=0

74



Semantic Segmentation: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with
Pooling, strided downsampling and upsampling inside the network!
convolution Med-res: Med-res:

D,x H/4 x W/4 D,x H/4 x W/4
Low-res:
03 X H/4 x W/4
High-res: High-res:
3XHxW D, x H/2 x W/2 D, x H/I2Z x W/2

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al. “Learning Deconvolution Network for Semantic Seamentation”, ICCV 2015

Upsampling:
Unpooling or strided
transpose convolution

Predictions:
HxW

75



Advantage of Bottleneck

* Lower memory cost

4 4 4 NN N

Conv Conv Conv

Low-res:
Yy y Yy UL D, x H/4 x W/4 LI 4
- ) ) | High-res: High-res:
D, x H/2 x W/2 D, x H/2 x W/2 26




Recap of Receptive Field

Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?

Input A1 A2 A3

- - [ I

I r "-v\‘

=

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

Softmax

FC 1000

FC 4096

FC 4096

Poo

Poo

Pool

Input

AlexNet

| Softmax |

| FC 1000 |
| Softmax | | FC 4096 |
| FC 1000 | | FC 4096 |
| FC 4096 ] | Poo ]
| FC 4096 |
| Pool |

| Pool |
| Poo |
| Poo ] | Poo ]
| Poo | | Poo |
| Poo | | Poo |
[ Input || Input |

77



Advantage of Bottleneck

* Lower memory cost

 Larger receptive field and thus better global context

* Convolution on a smaller feature map correspond to conv
with a big kernel size at the original resolution

Med-res: Med-res:
/ / / D, x H/4 x W/4 D, x H/4 x W/4%
Conv Conv Conv '
— — > y
Low-res:
/ / / e D, x H/4 x W/4 _/_/
. ) ) High-res: High-res:

D1 x H/2 x W/2 D1 x H/2 x W/2 28



Improving FCN

What needs to be stored in the bottleneck?

79



Improving FCN

74

y

What needs to be stored in the bottleneck?
e Global context

80



Improving FCN

4

y

What needs to be stored in the bottleneck?

e Global context

e Per-pixel spatial information, especially around
the boundary

81



UNet Structure

input

imat?g > > > > 2;;?#;,“@0,1 o Sk'lp link between
17 map

the feature maps
from the encoder
and the decoder

’HI with the same
|l A E resolution.
ﬁ l

‘ olom ; |I’II.|! = conv 3x3, Rel.U « Now what needs to
=M ¢ W o t copy and crop StOI‘e _in the
- - i maxpool 22 ;
PRI | -:;l(l:l-‘uv021>(v:2x2 bottleneck?

82



UNet Structure

input . .

imat?g . > 2:;?#;,%“0,1 e The Sk]p link makes
| 1 ™ shortcut from the
| inputs to the
‘.

outputs

i g
!

need to memorize

‘ olom 3 |I’II.|! = conv 3x3, Rel.U the whole image
=M W o t copy and crop bUt Only prOVideS
’-.m m § max pool 2x2
TR # up-conv 2x2 global context

= conv 1x1

83



Summary of Semantic Segmentation

A top-down approach

 Bottleneck structure:
* Large receptive field and provides global context
* Get rid of redundant information
* Lower the computation cost

* Skip link:
* Assist final segmentation
* Avoid memorization

84



DeeplLab V3

[ g T T T = — =
A 0.5x 2x P A N
- N S g LT 77077,
= =) ) (7 7/ ' ' Spatial Pyramid Pooling
' 0.5x 2x - ~ v
Spatial Pyramid Pooling 7 N L7 . Ax
- J A ' '
s | 0.5x lzx | f0.5x
L/ | | 7
to.5x 8x L S — L f 0.5x |
: A . .
L/ 0.5 le E —sL

: !
T05X 0-5 1 f 0.5x '
Image Prediction Image Prediction Image Prediction
(a) Spatial Pyramid Pooling (b) Encoder-Decoder (c) Encoder-Decoder with Atrous Conv

85



General Dense Prediction: UperNet

living room

v
I
(1]
Q
o
ll

\ 4

PPM Head

mirJOl philiting -

wall

winLowpane

cabinet
coffee table

—
1/4
[
Fused Feature Map
. Head
Feature Pyramid Network
or (~450 x 720)
S —
/ no grad + Head
| —— =
image for texture material i .
(~ 48 x 48) { ' _ e
I — P A A. A A A
(training) A A ‘/
fLL 2L /A = marbled
» Head
texture
»| Conv 3x3 Gl »|  Classifier (testing)
Pooling
Scene Head
Conv3x3 [~» @@ e —» Conv3x3 [~ Classifier
\ ) Texture Head
»{ Conv 3x3 > Classifier Y
4x Conv

Object / Part / Material Head (128 Channels) 86



Evaluation Metrics: Pixel Accuracy

* Pixel accuracy: simply report the percent of pixels in the image
which were correctly classified.

TP + TN
TP + TN + FP + FN

accuracy =

* However, may be misleading when the class representation is
small within the image, as the measure will be biased in mainly
reporting how well you identify negative case (ie. where the
class is not present).

87



Evaluation Metrics: Intersection over Union

* Intersection over Union

target N prediction

target U prediction

Ground Truth Prediction

100 100

200 200
300 300
400 400

500 500

88



Alternative Loss: Soft loU Loss

_ I(X)
ToU = m

where, I(X) and U(X) can be approximated as follows:

I(X)=) X,*Y,.
veV

UX)=) (X,+Y, - X,*Y,).
veV

Therefore, the IoU loss L,y can be defined as follows:

I(X)
Liov=1—1IoU=1— ———~ .
! U U(X)

89



Evaluation Metrics: mloU

 For each class, we can compute the metrics above by finding
the intersection between the ground truth and predicted one-
hot encoded masks for each class.

* Metrics can be examined class-by-class, or by taking the
average over all the classes, to get a mean loU.

90



Introduction to Computer Vision

Next week: Lecture 9,
3D Vision |

Embodied Perception and InteraCtion'lEat



