Introduction to Computer Vision

Lecture 6 - Deep Learning lll

Prof. He Wang

Embodied Perception and InteraCtion’kalb

« Assignment 1: to release on 3/14, due on 3/29 11:59PM (this Saturday)
* Implementing convolution operation
« Canny edge detector
 Harris corner detector
* Plane fitting using RANSAC

* Some functions are required to be implemented without for loop.

* If 1 day (0 - 24 hours) past the deadline, 15% off
* If 2 day (24 - 48 hours) past the deadline, 30% off
« Zero credit if more than 2 days.

* Set up the task

* Prepare the data —> Need a labeled dataset.
 Built a model —> construct your neural network

 Decide the fitting/training objective —> Loss function
* Perform fitting —> Training by running optimization

« Testing —> Evaluating on test data

CNN Training

To Train a CNN

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph
(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

To Train a CNN

Hardware + Software

PyTorch

TensorFlow

* Data preparation

* Weight Initialization Backpropagate + update weight
* Set a loss function 4’)9 Output
Loss
« Start optimization
.. GT
» optimizer?

* learning rate?

* Data preparation

Backpropagate + update weight

Output

Loss

GT

Data Preprocessing

original data zero-centered data normalized data

10 10

1g =10 =5 0 5 19 .10 = 0 5 10

P
I

np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Data Preprocessing

Remember: Consider what happens when

the input to a neuron is always positive... llowed
gradient
update
directions
|
f E wz .CCZ _|_ b allowed zig zag path
i gradient
(] update
directions
hypothetical
What can we say about the gradients on w? optimal w

Always all positive or all negative :(vector

(this is also why you want zero-mean data!)

Data Preprocessing

Before normalization: classification loss After normalization: less sensitive to small

very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize

.:

@

I S
A

Summary of Data Preprocessing

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

* Weight Initialization

* Weight Initialization Backpropagate + update weight

Output

Loss

GT

Weight Initialization

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01 * np.random.randn(Din, Dout)

Works ~okay for small networks, but problems with
deeper networks.

Weight Initialization

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W 0.01 * np.random.randn(Din, Dout)
X np.tanh(x.dot (W))
hs.append(x)

What will happen to the activations for the last layer?

Weight Initialization: Activation Statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]): Q: What do the gradients
W= 0.01 * np.random.randn(Din, Dout) lean
2 = s LAt dL/dW look like™
hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Weight Initialization: Activation Statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]): Q: What do the gradients
W= 0.01 * np.random.randn(Din, Dout) ea”
i o tHnb Aot () dL/dW look like

1B APPena(x) A: All zero, no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00

std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Weight Initialization: Activation Statistics

dims = [4096] * 7 Increase std of initial

hs = [] weights from 0.01 to 0.05
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W 0.05 * np.random.randn(Din, Dout)
X np.tanh(x.dot (W))

hs.append(Xx)

What will happen to the activations for the last layer?

Weight Initialization: Activation Statistics

Increase std of initial
weights from 0.01 to 0.05
np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
0.05 * np.random.randn(Din, Dout)
np.tanh(x.dot (W))

hs.append(Xx)

[4096] * 7

Layer 1
mean=0.00
std=0.87

Layer 2
mean=-0.00
std=0.85

Layer 3
mean=0.00
std=0.85

Layer 4
mean=-0.00 mean=0.00 mean=-0.00

All activations saturate

Q: What do the gradients
look like?

A: Local gradients all zero,
no learning =(

Layer 5 Layer 6

std=0.85 std=0.85 std=0.85

Weight Initialization: Xavier Inititalization

dims = [4096] * 7 “Xavier” initialization:
hs = [] std = 1/sqrt(Din)

X = np.tanh(x.dot(wW))
hs.append(Xx)

Weight Initialization: Xavier Inititalization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) : |
= 05 random.randn(l6 . dimaTDT nicely scaled for all layers!
for Di i ' ' oime

np.random.randn(Din, Dout) / np.sqrt(Din)] For conv Iayers, Dinis

W =
i = np.tanh(x.dot(W)) filter_size? * input_channels
s.append(Xx) o -

Let: y = X, W, X, W,+..+X . W Var(y) = Var(x,w,+X,W,+...+X . W_.)
_ _ L = Din Var(xw.)

Assume: Var(x,) = Var(x,)= ...=Var(x,.) = Din Var(x) Var(w)

We want: Var(y) = Var(x) [Assume all x,, w. are iid]

So, Var(y) = Var(x.) only when Var(w.) = 1/Din

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: Xavier Inititalization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) i |
= np.candom.candn(16, dizslBi) nicely scaled for all layers!
for Din, Dout din zip(dims[z:-11, dims[1:]1)2:

W = np.random.randn(Din, Dout) / np.sqrt(Din)

X = np.tanh(x.dot(W))

hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: Xavier Inititalization

dims
hs =
x=

X np.maximum(0, x.dot(W))

[]

= [20961 % 7 Change from tanh to ReLU

np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1l:]):

W = np.random.randn(Din

hs.append(x)

Dout) / np.sgrt(Din)

Weight Initialization: Xavier Inititalization

dims = [4096] * 7

hs
X=
for

=] Change from tanh to ReLU

np.random.randn(16, dims[0])
Din, Dout in zip(dims[:-1], dims[1l:]):
W np.random.randn(Din, Dout) / np.sqrt(Din)

X np.maximum(0, x.dot(W))

hs.append(x)

Xavier assumes zero
centered activation function

Activations collapse to zero
again, no learning =(

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10

Weight Initialization: He Inititalization

dims = [4096] * 7

e [ReLU correction: std = sqrt(2 / Din) Just right”: Activations are
nicely scaled for all layers!

X = np.random.randn(16, dims[0])

for_Di j ' ims[:-11, dims[1:]1):
np.random.randn(Din, Dout) * np.sqrt(2/Din)

W =
X = np.maximum(0, x.dot(W))
h

s.append(X)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

-1 0 1 -3 0 1 -1 0 1 -1 0 1 -3 0

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Initialization is still an Active Research Area

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015
All you need is a good init, Mishkin and Matas, 2015
Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Backpropagate +|update weight

Output

Loss

« Start optimization
» optimizer?

GT

Update rule:

Tiy1 = Tt — (-va(ilft)

while True:
dx = compute_gradient(x)
x —= learning_rate * dx

Problems with SGD: #1

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Aside: Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large

w2

w1=

Problems with SGD: #1

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Problems with SGD: #2

loss
—

What if the loss
function has a
local minima or
saddle point?

vs

Problems with SGD: #2

loss

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

V=

Problems with SGD: #2

What if the loss
function has a
local minima or
saddle point?

Saddle points much
more common in
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization®, NIPS 2014

Problems with SGD: #3

Our gradients come from
minibatches so they can be noisy!

L(W) = % > Li(wi, y:, W)

=1

N
1
VwL(W) = N Z VwLi(zi,yi, W)

1=1

Slide credit: Stanford CS231N

SGD + Momentum

continue moving in the general direction as the previous iterations
SGD SGD+Momentum

Vi+1 = pvr + V f(xy)

Tt+1 = Tt — QU441

Tyl =T — (}gi(.’Ift)

while True: vx = 0
dx = compute_gradient(x) while True:
x —= learning_rate * dx dx = compute_gradient(x)
vX = rho *x vx + dx
X —= learning_rate *x vXx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Adam

first_moment 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t) Bias correction
X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)) AdaGrad / RMSP
aGra rop
Bias correction for the fact that Adam with beta1 = 0.9,
firs? and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Backpropagate +|update weight

Output

Loss

« Start optimization

GT

* learning rate?

Loss Curves for Different Learning Rates

loss * An appropriate learning rate
for classification: 1e-6 ~ 1e-3

low learning rate
* Low learning rate: undershoot
high learning rate

\ * High learning rate: overshoot

good learning rate

Iteration and Epoch

* [teration:
* One batch (whose size is called batch size)
A gradient descent step

* Epoch

« Contains many iterations that go over the training data for
one complete pass

« After a epoch, plot train curve, evaluate on val, save
model...

Learning Rate

1(6)

Too low

1(0)

Just right

1(6)

Too high

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Learning Rate Schedule

Training Loss

Reduce learning rate

l

20

100

|dea: high learning rate at the beginning, decay it later

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Learning Rate Schedule

Learning rate

10 A

0.8 1

06 1

0.4 -

0.2 1

0 20 40 60
Epoch

Vaswani et al, “Attention is all you need”, NIPS 2017

100

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

1
Cosine: «; = 5 @0 (1 + cos(tm/T))

Linear: «o; = ag(1 —t/T)

Inverse sqrt: oy = v/ Vit

(X() : Initial learning rate
(vt - Learning rate at epoch t
I : Total number of epochs

Learning Rate Schedule: Linear Warmup

Learning rate L e eg :
06 J High initial learning rates can make loss

explode; linearly increasing learning rate
from O over the first ~6000 iterations can
prevent this

0.5

04

0.3 A

0.2 1

0.1 1

0.0 1

0 20 a0 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017

Batch Size and Learning Rate

* An empirical rule of thumb: if you increase the batch
size by N, also scale the initial learning rate by N.

* Why? Suggested reading: visualizing learning rate vs.
batch size.

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017

https://miguel-data-sc.github.io/2017-11-05-first/#:~:text=For%20the%20ones%20unaware,%20general%20rule%20is%20%E2%80%9Cbigger,you%20are%20to%20%E2%80%9Cstochastic%E2%80%9D%20descent%20(batch%20size%201).
https://miguel-data-sc.github.io/2017-11-05-first/#:~:text=For%20the%20ones%20unaware,%20general%20rule%20is%20%E2%80%9Cbigger,you%20are%20to%20%E2%80%9Cstochastic%E2%80%9D%20descent%20(batch%20size%201).
https://miguel-data-sc.github.io/2017-11-05-first/#:~:text=For%20the%20ones%20unaware,%20general%20rule%20is%20%E2%80%9Cbigger,you%20are%20to%20%E2%80%9Cstochastic%E2%80%9D%20descent%20(batch%20size%201).

Summary of Learning Rate Schedule

« Adam is a good default choices working okay with
constant learning rate.

* SGD + Momentum can outperform Adam but may
require more tuning of LR and schedule

* Try cosine schedule: very few hyper parameters.

* If you are new to a dataset, use Adam with constant
learning rate until you see it converges and then modify
the learning rate.

Underfitting & Overfitting

Underfitting and Overfitting

Underfit Optimum Overfit
(high bias) (high variance)

High training error Low training error Low training error
High test error Low test error High test error

Under-

fitting

Number of
iterations

Underfitting

« Underfitting on the train set: usually caused by limited model
capacity or unsatisfactory optimization

 Batch normalization

Batch Normalization

tanh

FC

BN

tanh

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it

-

Usually inserted after Fully
Connected or Convolutional layers,
,and before nonlinearity.

Activations
e

Batch Norm

Learnable
Params

Saved
Params

>

Beta Gamma
[(B)] (y)

-Output
¥ (bn)

e |

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739#:~:text=Batch%20Norm%20is%20a%20neural%20network%20layer%20that,why%20we%20need%20it%20and%20how%20it%20works.

Batch Normalization: Train Mode

N
Input: +: N x D _1 Per-channel mean
. . e p— T: i ’
Hj N z; “J shapeis D
7=
Learnable scale and R .
. = o er-channel var,
shift parameters: 95 =N 2(%,3 i) shape is D
Y, B8 D "
5 Li,j — Hyj :
Ti; = Normalized x,
Learning v= o, 07 +¢ ShapeisNxD
B= = will recover the Yo = i@+ B, Output
identity function! *J I 7 Shape is N x D

Batch Normalization: Eval Mode (Test-Time)

Input: »: N x D

Learnable scale and
shift parameters:

¥ 24 1)

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

p _ (Running) avera-ge of N Per-channel mean,
rms values seen during training shape is D

Hrms < PHrms T (1 _ p)/’tl

(Running) average of Per-channel var,
rms values seen during training shape is D

% x?,,_] - iurms,j

Bis = Normalized x,
o2 +¢ ShapeisNxD
rms,j
A Output
L = Y T - ’
Yij = Vi%ij + P Shape is N x D

BatchNorm Helps!

- Makes deep networks much easier to train!

- Improves gradient flow

- Allows higher learning rates, faster convergence
- Networks become more robust to initialization

- Acts as regularization during training

100 PRy ———— 100
v \ v

s =
> S
-4 >
= —— Standard, LR=0.1 g —— Standard, LR=0.1
(@) 50 - Standard + BatchNorm, LR=0.1 5 50 - Standard + BatchNorm, LR=0.1
< - - Standard, LR=0.5 S - - Standard, LR=0.5
o = = Standard + BatchNorm, LR=0.5 < = = Standard + BatchNorm, LR=0.5
£ o
£)
© —
l_ 1 = '\ N I Y ~ - ,‘

~ ~ (A Ny 000 e e

WA T A \\"\\l"‘,.:\lf'\',.,.'\\'\Iv\ J "," W -
0 5k 10k 15k 0 5k 10k 15k
Steps Steps

Figure 1: Comparison of (a) training (optimization) and (b) test (generalization) performance of a
standard VGG network trained on CIFAR-10 with and without BatchNorm (details in Appendix A).

Stacking More Layers

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like

[(Conv-BN-ReLU)*N - POOL?]*m-(FC-BN-RELU)*K{FC-SoftMax

| Image Maps No BN at the last layer.
nput

A =ING

Fully Connected

Convolutions
Subsampl ng

et al. 1998 from CS231n 2017 Lecture 1

Why BatchNorm Works?

* Original hypothesis: mitigate the “internal covariate shift”

« “Training Deep Neural Networks is complicated by the fact that the
distribution of each layer’s inputs changes during training, as the
parameters of the previous layers change. This slows down the training by
requiring lower learning rates and careful parameter initialization, and
makes it notoriously hard to train models with saturating nonlinearities.”

« “We refer to the change in the distributions of internal nodes of a deep
network, in the course of training, as Internal Covariate Shift.”

https://arxiv.org/abs/1502.03167

Why BatchNorm Works?

* New findings: BatchNorm smoothens the loss landscape
« BatchNorm may not reduce the internal covariate shift.

« Batch normalization is effective because it smooths and, in turn, simplifies
the optimization function that is being solved when training the network.

« “This ensures, in particular, that the gradients are more predictive and thus
allow for use of larger range of learning rates and faster network
convergence.”

How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covariate Shift), 2018.

https://arxiv.org/abs/1805.11604

Pros and Cons of BatchNorm

FlC - Makes deep networks much easier to train!
BN - Improves gradient flow
I - Allows higher learning rates, faster convergence
tanh - Networks become more robust to initialization
| - Acts as regularization during training
FC - Zero overhead at test-time: can be fused with conv!
l - Behaves differently during training and testing: this
BlN is a very common source of bugs!
tanh

Problems with Batch Normalization

* If batch size in the training time is too small (like 1), then i, o
in a training batch can be very random.

» There will be a big discrepancy between u, ¢ in a training

batch and ..., 0, . at test time. —> Misaligned objective
during training and testing

* May lead to huge performance drop at test time even for
training data.

Get Rid of Batch Dimension?

Batch Norm

H, W
L
QW L

V. (T T

Can we remove the dependence on the batch dimension?
We then don’t have the discrepancy between train and eval modes.

(g
Q
>
=
=
=
O
T
c
O
S
©
=
'
=
-
O
Z

T
N TN
LR Z
T

Group Norm

Sy
A A S A

M 'H

R I N
o
RENEEE Z
TR

Instance Norm

TTENE
R
A Z
T

Layer Norm

Batch Norm

A A A A A
ey O
L Ly
VA AT

M ‘H

Style transfer!

Widely used in NLP!

Wu and He, “Group Normalization”, ECCV 2018

Group Normalization

—+Batch Norm
34 |-e-Group Norm
32t
= GroupNorm outperforms
E28 BatchNorm, when
26 | e Batch size is small
54 . o - e Instances in a batch are highly
. 1 | , 1 correlated
32 16 8 4 2
batch size (images per worker)

Figure 1. ImageNet classification error vs. batch sizes. This is
a ResNet-50 model trained in the ImageNet training set using 8

workers (GPUs), evaluated in the validation set.

Problems of CNN Training

« Underfitting on the train set: usually caused by limited model
capacity or unsatisfactory optimization

* ResNet or Skip links

Problems When CNN Gets Really Deep

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?
~\--\]_\\\ffi|ayer

[terations [terations

56-layer

Test error
Training error

56-layer model performs worse on both test and training error
-> The deeper model performs worse, but it's not caused by overfitting!

Problems When CNN Gets Really Deep

Fact: Deep models have more representation power
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem,
deeper models are harder to optimize

Problems When CNN Gets Really Deep

Fact. Deep models have more representation power
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem,
deeper models are harder to optimize

What should the deeper model learn to be at least "™
as good as the shallower model? | relu
A solution by construction is copying the learned T
layers from the shallower model and setting X

additional layers to identity mapping.

H(x)

relu

Residual Link

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x)

A
relu

!

X
“Plain” layers

Residual Link

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

L |[dentity mapping:
H(x) HX) = F(x) + x (F H(x) =xif F(x)=0
X
[relu it bl identity
T
X X

“Plain” layers Residual block

From the Perspective of Gradient BP

Softmax
FC 1000

Skip links provide bypaths for
gradients to backpropagate.

Loss Landscape

« “When networks become sufficiently deep, neural loss landscapes
quickly transition from being nearly convex to being highly chaotic.
This transition from convex to chaotic behavior coincides with a
dramatic drop in generalization error, and ultimately to a lack of
trainability. ”

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Loss Landscape

 “skip connections promote flat minimizers and prevent the
transition to chaotic behavior, which helps explain why skip
connections are necessary for training extremely deep
networks. ”

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

 Overfitting on the test set:
» Data augmentation
* Regularization
* Dropout

The Generalization Gap

Train

Loss Accuracy Generalization Gap

Stop training here

Iteration Iteration

Generalization gap: the difference between a model's
performance on training data and its performance on unseen
data drawn from the same distribution.

 Overfitting on the test set: usually caused by imbalance
between data and model

» Data augmentation
* Regularization
* Dropout

Early Stopping

Train
Loss Accuracy

Stop training here

Iteration Iteration

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot
that worked best on val

The Generalization Gap and Overfitting

* For an overfitted model, it contains
more parameters than can be justified by

the data. . |
Optimum Overfit

(high variance)

» The essence of overfitting is to have
unknowingly extracted some of the residual
variation (i.e., the noise) as if that variation
represented underlying model structure

« To minimize generalization gap, we consider Low training error Low training error
« o e . Low test error High test error
to minimize the mismatch between your
model and your data.

https://en.wikipedia.org/wiki/Statistical_noise

From the Perspective of Data

* |If your data exhibit sufficient variations, then an appropriate
model can’t easily overfit.

* To increase the diversity of your data

« Data augmentation (free and fast)

Data Augmentation

Load image
and label

Compute
loss

Transform image

Data augmentation is a set of techniques to artificially increase the amount of data by gene
rating new data points from existing data. This includes making small changes to data or usi
ng deep learning models to generate new data points.

Simplest Data Augmentation: Horizontal Flip

Figure credit: Stanford CS231N

e Data augmentation applies changes to the image while
maintaining the label unchanged.

e The thing you cares must be invariant under the transformation of
data augmentation.

Data Augmentation Gallery

 Position augmentation
e Scaling
 Cropping
* Flipping
 Padding
* Rotation
 Translation
* Affine transformation

 Color augmentation
* Brightness
e Contrast
e Saturation
e Hue

 Applying GAN/RL for data augmentation

https://research.aimultiple.com/data-augmentation/

https://research.aimultiple.com/data-augmentation/#:~:text=What%20is%20data%20augmentation?%20Data%20augmentation%20is%20a,deep%20learning%20models%20to%20generate%20new%20data%20points.

Benefit of Using Data Augmentations

* Improving model prediction accuracy
 reducing data overfitting and creating variability in data
* increasing generalization ability of the models
* helping resolve class imbalance issues in classification

Doing Right Data Augmentations

e The magnitude of DA can’t be too strong. If core information is
lost, then model can’t learn.

Doing Right Data Augmentations

e The magnitude of DA can’t be too strong. If core information is
lost, then model can’t learn.

e The magnitude of DA shouldn’t be too weak, otherwise no use.

e Decide the magnitude by human or by tuning parameters.

 Overfitting on the test set: usually caused by imbalance
between data and model

* Regularization

Regularization

 Avoid the model to be arbitrarily complex

LOW) = = 37 Li(f @, W), 30) + AROW)

N J W_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data
too well so we don't fit noise in the data

Regularization

 Avoid the model to be arbitrarily complex

N
LOW) = 3 S0 Lalf i, W), 00) + AR(W)

N J w_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match fraining data from doing foo well on training data

Occam’s Razar: Among multiple competing
hypotheses, the simplest is the best,
William of Ockham 1285-1347

Regularization from the Model Perspective

 Avoid the model to be arbitrarily complex

L=, ., +ARW)

main

In common use:

L2 regularization ~ B(W) =332, Wy; (Weight decay)
L1 regularization R(W) =321 22 [Why|

Elastic net (L1 + L2) R(W) =30, >, 8W;, + [Wiy|

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Dropout

Example forward
pass with a
p = 0.5 # ’,__',w,.’ 2bili ty of keeping a unit active. higher = less dropout 3_Iayer network

: using dropout
def train_step(X):

"um X contains the data

H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p #

H1 *= Ul # droj

H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p # se
H2 *= U2 # drop

out = np.dot(W3, H2) + b3

_ Dopout

How can this possibly be a good idea?

111

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail ﬁ%—s

is furry =% Al
.. =5core

has claws +/
mischievous

look

Dropout: Test Time

“" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p = 0.5 # probal

def train_step(X):
"" X contains the data """

H1 = np.maximum(©®, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # 71
H1 *= Ul # drop! . , ;

HZ = np.maximum(0, np.dot(WZ, AI) * b2Z) drop In train time
U2 = np.random.rand(*H2.shape) < p # i 35 h

H2 *= U2 # d

out = np.dot(W3, H2) + b3

def predict(X):

H = np.maximum(0, np.dot(W1, X) + bl)|* p # Wihoomm e B A scale at test time

H2 = np.maximum(0O, np.dot(W2, H1l) + b2) * p #
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:

output at test time = expected output at training time

BatchNorm as a Regularization

« BatchNorm forces the output before activations to follow a
certain Gaussian distribution, which limits the capacity of a
model ==> Regularization

« BatchNorm thus helps alleviate overfitting.

« With BatchNorm, people may not need dropout.

Summary of Mitigating Overfitting

* Principle:
* to balance the data variability and the model capacity

 Techniques:
(from the data perspective)
(from the data perspective)
« Regularization (from the model perspective)
* Dropout (from the model perspective)

(used only for large FC layers)

Introduction to Computer Vision

Next week: Lecture 7/,
Deep Learning |V

Embodied Perception and InteraCtion'lEat

