Introduction to Computer Vision

Lecture 4 - Deep Learning |

Prof. He Wang

Embodied Perception and InteraCtion'2ab SPLIIE



« Assighment 1: to release on 3/14 (this Friday evening), due on 3/29 11:59PM
(Saturday)

 Implementing convolution operation
« Canny edge detector

 Harris corner detector

* Plane fitting using RANSAC

« Some functions are required to be implemented without for loop.

 If 1 day (0 - 24 hours) past the deadline, 15% off
 If 2 day (24 - 48 hours) past the deadline, 30% off
« Zero credit if more than 2 days.



Choices of Window Functions

Rectangle “hard” window Isotropic “soft” window
LAl | g or
1 in window, O outside Gaussian
w is not rotation-invariant. 8, is rotation-invariant.

wEI; wHELL

w* I w* I

g *IF g, * LI,

Mo o) = 8 >X<]xly 8 *Iyz

M(x()a y()) —




Using Gaussian Filter

8, I g, * L] [eUD) g 1)
& H L g, * I |8 L) g

Gaussian

" 0(xg, o) = det(M(x, o)) — aTr(M(x, yo))2 — 1

= (gUDgU) = [gU L)) — algU?) + gUD]* — 1



The Whole Process of Harris Detector

1. Image derivatives 1= ‘I\I

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function
0 = gUDgU?) — [gU 1)) — algUD) + gUDT* — 1

5. Thresholding to obtain a binary mask 6(x,, yy) > 0

6. Non-maximum suppression




Properties of Harris Detector

« Corner response is equivariant with both translation and image
rotation.

™ mj> |
57 =



Equivariance and Invariance

fX eV, andf: V — Visa function,

and T : V — Vs a transformation operating X, e.g., translation,
Definitions:
fto be equivariant under T'if fto be invariant under T'if

T A(X)] = f(T(X)) J(X) = f(T(X))



Check for Equivariance and Invariance

g, IE g, LI gD gl
2 2
&L, &L | |8 L) g(y)

Gaussian

0(xp, Yo) = (8UDey) — [ L)1) — alg(Iy) + gU))]* — 1

Translation operation: T, ,0(xy, Vo) = O(xy + u, yy + v)

Rotation operation: R¢(9(XO, yo) — 9(R¢[Xo, y()]T)

0 is equivariant under both rotation and translation!



Step-by-Step Harris Detector

* Input: two images

Image borrowed from Stanford CS131 9



Step-by-Step Harris Detector

« Compute corner response 6

Image borrowed from Stanford CS131 10



Step-by-Step Harris Detector

* Thresholding and perform non-maximal suppression




Step-by-Step Harris Detector

* Results

Image borrowed from Stanford CS131 12



Properties of Harris Detector

« Corner response is equivariant with both translation and image

rotation.

 Not invariant to scale.

N
o7

= A
S

)

All points will be
classified as edges!

13



Scale Invariant Detectors

* Harris-Laplacian?
Find local maximum of:

— Harris corner detector in
space (image coordinates)

— Laplacian in scale

scale

/

Yy

< Laplacian —

<~ Harris —

o SIFT (Lowe)?

Find local maximum of:

— Difference of Gaussians in space
and scale

Read by Yourself

scale

/

Yy

t
O
S
G)
|

AARGA AL

14



Feature Description



ocal Descriptors

* We know how to detect points
* Next question:
How to describe them for matching?




Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters




A feature is any piece of information which is relevant for
solving the computational task related to a certain application.

Useful features F
» Location
* Size
* Building time
e Current condition
* House style

How much is this house?

53



» Based on the features, we
can build a model.

Useful features F:

* Heuristic model.: - ;gcation
. * dlze
y = (10 — location) X area - Building time

e Current condition
* House style

How much is this house?

54



* Based on the features, we
can build a model.

Useful features F:

* Heuristic model.: - Location
_ : - Size
y = (10 — location) X area - Building time

e Current condition
* House style

 Parametric model:
Y = ¢9(F )

* when we have some How much is this house?
observations, we can fit &

55



* Based on the features, we
can build a model.

Useful features F:

* Heuristic model.: - Location
_ : - Size
y = (10 — location) X area - Building time

e Current condition
* House style

 Parametric model:
Y = ¢9(F )

How much is this house?
» Deep vision model y = @,(1)

56



Topic Switch

« High-level vision (where deep learning wins!)
» Object recognition
» Scene understanding
 Activity understanding

57



ocal Descriptors

* We know how to detect points
* Next question:
How to describe them for matching?




Local Features

* Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters




A feature is any piece of information which is relevant for
solving the computational task related to a certain application.

Useful features F
» Location
* Size
* Building time
e Current condition
* House style

How much is this house?

53



» Based on the features, we
can build a model.

Useful features F:

* Heuristic model.: - ;gcation
. * dlze
y = (10 — location) X area - Building time

e Current condition
* House style

How much is this house?

54



* Based on the features, we
can build a model.

Useful features F:

* Heuristic model.: - Location
_ : - Size
y = (10 — location) X area - Building time

e Current condition
* House style

 Parametric model:
Y = ¢9(F )

* when we have some How much is this house?
observations, we can fit &

55



* Based on the features, we
can build a model.

Useful features F:

* Heuristic model.: - Location
_ : - Size
y = (10 — location) X area - Building time

e Current condition
* House style

 Parametric model:
Y = ¢9(F )

How much is this house?
» Deep vision model y = @,(1)

56



Topic Switch

« High-level vision (where deep learning wins!)
» Object recognition
» Scene understanding
 Activity understanding

57



Machine Learning 101



From Line Fitting to Neural Network Training

- When we have some observations{(x, y)}, we want to
find the relationship behind y and x.

* Line fitting: we know the relationship
is a line, so we use y = mx + b to fit
(m, n)

31



From Line Fitting to Neural Network Training

- When we have some observations{(x, y)}, we want to
find the relationship behind y and x.

* Line fitting: we know the relationship
is a line, so we use y = mx + b to fit
(m, n).

* Training neural network: similarly, we  sthisas -

use a parametric model y = /y(x) to SR E L
fit, however we usually have less .S Sl e

: el ] 5D 0.99 (yes)
understanding of /. ) ]

32



* Set up the task

* Prepare the data —> Need a labeled dataset.
 Built a model —> construct your neural network

 Decide the fitting/training objective —> Loss function
* Perform fitting —> Training by running optimization

« Testing —> Evaluating on test data



Task: Binary Classification — Is This Digit a 5?

Data Model Output
Py — @O —
A
y € {0,1} : Yes or No

Parameters or weights

MINIST Dataset of handwritten digits

34



Task: Binary Classification — Is This Digit a 5?

Vata Model Output
-y — @0 — -
5
I oy
Probability
I .
y € {O’l } Parameters or weights of being a 5
p(y =1]x)

MINIST Dataset of handwritten digits

35



* Prepare the data —> Need a labeled dataset.



From MNIST dataset

« 70000 images in total

e Basic elements of One Data
Point

e One digit image x@;

g
¢
/ 28 X 28 pixels
6

. Pajred with a label
y? e {0,1}

/
3
7
>

3
7
o
K

N0~

¢
3
7
o

e Training data X, labels Y



 Built a model —> construct your neural network



Model: Logistic Regression

* Image 28 X 28: flatten to a one-dimensional vector

e Classification function:

- Let’s assume a linear function A(x) = g(8'x)

- Here we need a function g(z) to convert
z=wlx € (—00,00) to (0,1)



Sigmoid Function

-----

1
1+

g(2)

........

0 L
————————————————

Sigmoid function

Final model: f(x) = g(0"x)



 Decide the fitting/training objective —> Loss function



Maximum Likelihood Estimation

- In statistics, maximum likelihood estimation (MLE) is a method
of estimating the parameters of an assumed probability distribution, given

some observed data.

* This is achieved by maximizing a likelihood function so that, under the
assumed statistical model, the observed data is most probable.

- The point in the parameter space (network weight &) that maximizes the
likelihood function is called the maximum likelihood estimate.


https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Point_estimate
https://en.wikipedia.org/wiki/Parameter_space

Task: Binary Classification — Is This Digit a 57

Data

Model Output
=Py — @ —
A
I
y € {0’1} Parameterls or weights p(y =1]x)

MINIST Dataset of handwritten digits

43



Probability of One Data Point

 Classification function: hg (CL’)

p(y =1[x;0) = hy(x)
p(y=0[x;0) =1 — hy(x)

« Writing more compactly to handle bothy = 0and y = 1,

p(y | 2;0) = (ho())” (1 — ho(z))"™



Probability of All Data Points

* Assume all the data points are independent, then
p(Y|X, 9) — Hp(y(l) |x(l), 9) — H(hg(x(l)))y(l)(l _ he(x(l)))l_y(z)
i=1 i=1

log p(Y|X:0) = Y y?log(hyx®)) + (1 — yD)log(1 — hy(x))
i=1



Loss: Negative Log-likelihood

 Loss: the thing you want to minimize

* Negative log-likelihood (NLL) loss
Z(0) = —logp(Y|X; 0)

= — 2 YV log(hyx®) + (1 = yMlog(1 — fy(x?))
i=1



* Perform fitting —> Training by running optimization



* Set up the task

* Prepare the data —> Need a labeled dataset.
 Built a model —> construct your neural network

 Decide the fitting/training objective —> Loss function
* Perform fitting —> Training by running optimization

« Testing —> Evaluating on test data



Task: Binary Classification — Is This Digit a 5?

Vata Model Output
- — W o —
5
I -
Probability
I .
y € {O’l } Parameters or weights of being a 5
p(y =1]x)

MINIST Dataset of handwritten digits

49



Loss: Negative Log-likelihood

 Loss: the thing you want to minimize

* Negative log-likelihood (NLL) loss
Z(0) = —logp(Y|X; 0)

= — 2 YV log(hyx®) + (1 = yMlog(1 — fy(x?))
i=1



* Perform fitting —> Training by running optimization



Optimization 101

Z(0)

How would you go
to the very
bottom?

More in-depth discussion, see
https://web.stanford.edu/~boyd/cvxbook/.



Optimization Problems

(mathematical) optimization problem

minimize  fo(x)
subject to  fi(x) <b;, 1=1,...,m

e v = (x1,...,%,): optimization variables
e fo: R"™ — R: objective function
e f;,:R" - R,i=1,...,m: constraint functions

optimal solution z* has smallest value of f, among all vectors that
satisfy the constraints



Optimization Problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

T 2
e least-squares problems minimize ||Az — b3
. . . T
e linear programming problems minimize ¢ .
prog &P subject to alz <b;, i=1,...,m

e convex optimization problems



Convex and Non-Convex

Convex optimization problem
. Convex

minimize  fo(z)
subject to fi(xz) <b;, i=1,...,m

e objective and constraint functions are convex:

filax + By) < afi(z) + Bfi(y)

fa+B8=1,a>08>0
Non-convex

e includes least-squares problems and linear programs as special cases

solving convex optimization problems

e no analytical solution

e reliable and efficient algorithms



Gradient Descent

A first-order optimization method: Gradient Descent (GD)

-Update rule for one iteration: 6 := 6 — a'V,Z(0)

e Learning rate: o
o If a is small enough, then GD will definitely lead to a smaller loss
after the update. However, a too small & needs too many iterations

to get the bottom.
o If a is too big, overshoot! Loss not necessary to decrease.



Local/Global Minima

Convex

For convex optimization
problem, gradient descent
will converge to the global
minima.

For general optimization

problem, gradient descent
will converge to a local |
minima. Local minima

Non-convex

Global minima



Analytical Gradient

* How to perform GD to minimize NLL loss?

 Derive analytical gradient:

 For Sigmoid function

d 1

dz 1+e %
1

(1+e7)2 (™)

1 1
= Tred) (1 - <1+e—z>)
— 9(5)(1-g(2)).

/

g(z) =




Analytical Gradient

* How to perform GD to minimize NLL loss?

 Derive analytical gradient:

Z ==Y yPlog(hyx®) + (1 — yM)log(1 — hy(x?))
=1
0

INA 1 .
6_9]- - Z (yg(HTx) - (1= y)l _ g(ng)> c%’jg(e z)
0

1 1 . i )
(y (QTx) - (1 — y)l —g(QT:U)) g(9 :E)(l — 9(9 x))a_ejg 7




Non-Linear and Non-Convex Optimization

\‘ 72 TR
5\ Qs
Naive gradient descent

10 Rl 1/
ST 117 ,
ol

will trap at local minima.

L7777
el

Non-convex energy landscape



Batch Gradient Descent vs. Stochastic Gradient Descent

* Batch Gradient Descent » Stochastic Gradient Descent (SGD,
or Mini-batch Gradient Descent)

Take all data and label pairs in Randomly sample N pairs as a batch from

the training set to calculate the training data and then compute the
the gradient. average gradient from them.

-: very slow +: fast

-: easily get trapped at local +: can get out of local minima

minima

N
1
VwL(W) = = Y VwLi(zi,yi, W)

1=1



Non-Linear and Non-Convex Optimization

2

7 L i) TR /
o I SGD has the potential to

(N T
.\‘ 7z 775
‘5“\@} 4,

jump out of a local

L2

10 ” \;‘h{:“&%:;:;’:ﬁl
0
minima.

Sy

(i 7 7
el

Non-convex energy landscape



« Testing —> Evaluating on test data



Testing and Evaluation

 After training, we need to know how well our model
generalizes to unseen data or test data.

« Evaluate the classification accuracy on the test split.

* Will we still work well?

Generalization gap!



Multilayer Perceptron



Problem with Single-Layer Network

- 2(07 x) = 0 is a hyperplane in the space of x
 can only handle linear separable cases

A t B

. ’
“
0
Y ® - | ¥ e ..
® ey 00T e,
8 o .
* . .
“ o .
“ o .
o* . .,
. o *.
0
.
-~ o "
.
o . -
* . .
o . .
* . .
o . .
r . .
.
o . .
. .
. .
. .
v . s
.
o . &
W . K
o ", 0
K ", r
o .. o
. . .
S (R | TP
s =. @y e tsssent
-
-
‘ . .
B
+
) ‘

Linear separable Linear non-separable



Multi-Layer Perceptron (MLP)

Nonlinear activation Nonlinear activation

% % Linear/nonlinear

activation

3
‘A/1 ...... Wn ‘

Input Hidden layer Hidden layer Output

e MLP: Stacking linear layer and nonlinear activations.
e Through many non-linear layers, transform a linear non-
separable problem to linear separable at the last layer



Classification function with MLP

f;0) =Wx+b Linear function

Jfx;0) = g(Wog(Wix + b)) + by) 2-layer MLP,

or fully-conncted layers

In practice, we can concat the input variables with extract 1 for
learning bias.



Classification function with MLP

W,, b,

Input of

784 Dim

128 Dim

W,, b,

Hidden vector

Output
1 Dim

Wl = R784X128, W2 = R128X1
b, € R’ b, e R

How can we obtain the parameters/weights of the MLP?



Classification function with MLP

1.Initialization: randomly generate the weights W, ¢ R7®*128 W, ¢ R128x10

2.Forwarding: ;

3.Gradient (9
decent: new

Update weights Gradient ——
00

Z(y,y*)

<




Analytical Gradient?

, _ OL 0L
So, if we can compute the gradient OW,  IW,? then we can update W;, W,

: ci e . OL
An intuitive idea : Derive W by hand

However:
« Lots of matrix calculus
 Infeasible: any modification requires re-derivation



Backpropagation with a toy example

Let we consider a toy example: f(X, Y, Z) — (X + y') o/
(Computational graph
X

)

O;
- (o
of Of Of
Ox’ Jy 0z

And we want




Backpropagation with a toy example

Let we consider a toy example: f(X, Y, Z) — (X + y') o/
With input (-2, 5, -4)

X -2
O=
y 5 | Q f -12
z__4 b o
ox Oy
And we have the derivation 0 f P f



Backpropagation with a toy example

Let we consider a toy example: f(X7 Y, Z) — (X + y') o/

X -2
O
Yy 5 | f 12
1
1
7 -4 /



Backpropagation with a toy example

Let we consider a toy example: f(X7 Y, Z) — (X + y') o/

X -2
O
Yy 5 | f 12
1
Z -4
-3 -
v ‘“~af



Backpropagation with a toy example

Let we consider a toy example: f(X7 Y, Z) — (X + y') o/

X -2
O
y 5 -4 f -12
H 1
I
Z -4
-3

of
dq



Backpropagation with a toy example

Let we consider a toy example: f(X7 Y, Z) — (X + y') o/
X -2
O
Y 5 4 Q f -12
v, 1



Backpropagation with a toy example

Let we consider a toy example: f(X, Y, Z) — (X + y') o/

X -2
()
y 5 -4 f -12
4 v Q 1
/4 -4 N
3 N 8]( ﬁ _ ﬁf 5’q

6’y Jdy  Jq 0y

Chain rule



Backpropagation with a toy example

Let we consider a toy example: f(X, Y, Z) — (X + y') o/

X 2
4 % q 3
Y 5 %\ -4 f 12
4 \\ 1
Z -4 )
-3 AN af g _ 8f 8(]
I ox  0q 0x

Chain rule






D. 4 9q Local gradient
2 q

dq

y Oy



D. 4 9q Local gradient
Ox

Upstream gradient



af _

ox

of 0f 0q Upstream gradient
dy  Oqdy

Downstream gradient



of _

ox

of  Of Oq Upstream gradient

dy  0qdy The backpropagation can be efficiently
Downstream gradient implemented with simple matrix operations

“Backpropagation for a Linear Layer” from Justin 2017



Activation Function

Activation functions

Sigmoid | Leaky ReLU

o(z) = s max(0.1z, x)

tanh Maxout

tanh(a:) 0 N max(w{x + b1, wQT:E + bg)
RelLU ELU

max(0, z) ey o m

Slides credit: Stanford CS231N



Activation Function

Activation functions

Sigmoid |
o(z) = 1+f13—ﬂC

tanh |
tanh(x) : i
RelLU

max (0, x)

Slides credit: Stanford CS231N

RelLU is a good default
choice for most problems

Leaky ReLU
max(0.1z, x)

Maxout
max(wi z + by, wd  + by)

ELU ;
T x>0
ale* —1) <0 2 f



Review

Neural networks: Architectures

QN
«
e

%
0\;,»
vy
b
®

output layer
output layer
input layer input layer

hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net “Fully-connected” layers

Slides credit: Stanford CS231N



Problems for Using MLP to Process Vision Signals

 Flatten an image into a vector would

be very expensive for high resolution
images S

* Flattening operation breaks the local
structure of an image.



Introduction to Computer Vision

Next week: Lecture 5,
Deep Learning |l

Embodied Perception and InteraCtion'lEat



