Introduction to Computer Vision

Lecture 4 - Deep Learning I

Prof. He Wang

Embodied Perception and InteraCtion Lab

Spring 2025

Logistics

- Assignment 1: to release on 3/14 (this Friday evening), due on 3/29 11:59PM (Saturday)
 - Implementing convolution operation
 - Canny edge detector
 - Harris corner detector
 - Plane fitting using RANSAC
- Some functions are required to be implemented without for loop.
- If 1 day (0 24 hours) past the deadline, 15% off
- If 2 day (24 48 hours) past the deadline, 30% off
- Zero credit if more than 2 days.

Choices of Window Functions

Isotropic "soft" window

w is not rotation-invariant.

 g_σ is rotation-invariant.

$$M(x_0, y_0) = \begin{bmatrix} w * I_x^2 & w * I_x I_y \\ w * I_x I_y & w * I_y^2 \end{bmatrix}$$

$$M(x_0, y_0) = \begin{bmatrix} g_\sigma * I_x^2 & g_\sigma * I_x I_y \\ g_\sigma * I_x I_y & g_\sigma * I_y^2 \end{bmatrix}$$

Using Gaussian Filter

$$\therefore \theta(x_0, y_0) = \det(M(x_0, y_0)) - \alpha Tr(M(x_0, y_0))^2 - t$$
$$= (g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2) - \alpha [g(I_x^2) + g(I_y^2)]^2 - t$$

The Whole Process of Harris Detector

- 1. Image derivatives
- 2. Square of derivatives
- 3. Rectangle window or Gaussian filter
- 4. Corner response function

$$\theta = g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2 - t$$

- 5. Thresholding to obtain a binary mask $\theta(x_0, y_0) > 0$
- 6. Non-maximum suppression

Properties of Harris Detector

• Corner response is equivariant with both translation and image rotation.

If $X \in V$, and $f: V \to V$ is a function,

and $T: V \rightarrow V$ is a transformation operating X, e.g., translation,

Definitions:

f to be **equivariant** under T if f to be **invariant** under T if

T[f(X)] = f(T(X))

f(X) = f(T(X))

Check for Equivariance and Invariance

Rotation operation: $R_{\phi}\theta(x_0, y_0) = \theta(R_{\phi}[x_0, y_0]^T)$

 θ is **equivariant** under both rotation and translation!

• Input: two images

Image borrowed from Stanford CS131

- Compute corner response θ

• Thresholding and perform non-maximal suppression

• Results

Properties of Harris Detector

- Corner response is equivariant with both translation and image rotation.
- Not invariant to scale.

Scale Invariant Detectors

- Harris-Laplacian¹ Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

scale

• SIFT (Lowe)²

Find local maximum of:

 Difference of Gaussians in space and scale

 \leftarrow DoG \rightarrow

Read by Yourself Slides borrowed from Stanford CS131

Feature Description

Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

Local Features

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Feature

• A feature is any piece of information which is relevant for solving the computational task related to a certain application.

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

- Based on the features, we can build a model.
- Heuristic model: $y = (10 - location) \times area$

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

- Based on the features, we can build a model.
- Heuristic model: $y = (10 - location) \times area$
- Parametric model:
 - $y = \phi_{\theta}(F)$
 - \bullet when we have some observations, we can fit θ

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

- Based on the features, we can build a model.
- Heuristic model: $y = (10 - location) \times area$
- Parametric model: $y = \phi_{\theta}(F)$

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

How much is this house?

• Deep vision model $y = \phi_{\theta}(I)$

Topic Switch

- Low-level vision
 - Image processing
 - Edge/corner detection
 - Feature extraction
- Mid-level Vision
 - Grouping
 - Inferring scene geometry (3D reconstruction)
 - Inferring camera and object motion
- High-level vision (where deep learning wins!)
 - Object recognition
 - Scene understanding
 - Activity understanding

Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

Local Features

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Feature

• A feature is any piece of information which is relevant for solving the computational task related to a certain application.

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

- Based on the features, we can build a model.
- Heuristic model: $y = (10 - location) \times area$

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

- Based on the features, we can build a model.
- Heuristic model: $y = (10 - location) \times area$
- Parametric model:
 - $y = \phi_{\theta}(F)$
 - \bullet when we have some observations, we can fit θ

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

- Based on the features, we can build a model.
- Heuristic model: $y = (10 - location) \times area$
- Parametric model: $y = \phi_{\theta}(F)$

Useful features F:

- Location
- Size
- Building time
- Current condition
- House style
- ...

How much is this house?

• Deep vision model $y = \phi_{\theta}(I)$

Topic Switch

- Low-level vision
 - Image processing
 - Edge/corner detection
 - Feature extraction
- Mid-level Vision
 - Grouping
 - Inferring scene geometry (3D reconstruction)
 - Inferring camera and object motion
- High-level vision (where deep learning wins!)
 - Object recognition
 - Scene understanding
 - Activity understanding

Machine Learning 101

From Line Fitting to Neural Network Training

- When we have some observations $\{(x, y)\}$, we want to find the relationship behind y and x.
- Line fitting: we know the relationship is a line, so we use y = mx + b to fit (m, n)

From Line Fitting to Neural Network Training

- When we have some observations $\{(x, y)\}$, we want to find the relationship behind y and x.
- Line fitting: we know the relationship is a line, so we use y = mx + b to fit (m, n).

• Training neural network: similarly, we use a parametric model $y = h_{\theta}(x)$ to fit, however we usually have less understanding of h_{θ} .

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model —> construct your neural network
- Decide the fitting/training objective --> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model -> construct your neural network
- Decide the fitting/training objective —> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data
Data

From MNIST dataset

- 70000 images in total
- Basic elements of One Data Point
 - One digit image $x^{(i)}$: 28×28 pixels
 - Paired with a label $y^{(i)} \in \{0,1\}$
- Training data X, labels Y

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model --> construct your neural network
- Decide the fitting/training objective —> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Model: Logistic Regression

- Image 28×28 : flatten to a one-dimensional vector $x \in \mathbb{R}^{784}$
- Classification function:
 - Let's assume a linear function $h(x) = g(\theta^T x)$
- Here we need a function g(z) to convert $z = w^T x \in (-\infty, \infty)$ to (0,1)

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function

Final model:
$$f(x) = g(\theta^T x)$$

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model -> construct your neural network
- Decide the fitting/training objective --> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Maximum Likelihood Estimation

- In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.
- This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.
- The point in the parameter space (**network weight** θ) that maximizes the likelihood function is called the maximum likelihood estimate.

Task: Binary Classification – Is This Digit a 5?

MINIST Dataset of handwritten digits

Probability of One Data Point

• Classification function:

$$p(y = 1 | x; \theta) = h_{\theta}(x)$$

$$p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$$

• Writing more compactly to handle both y = 0 and y = 1,

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Probability of All Data Points

• Assume all the data points are independent, then

$$p(Y|X;\theta) = \prod_{i=1}^{n} p(y^{(i)}|x^{(i)};\theta) = \prod_{i=1}^{n} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

$$\log p(Y|X;\theta) = \sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Loss: Negative Log-likelihood

• Loss: the thing you want to minimize

• Negative log-likelihood (NLL) loss

$$\begin{aligned} \mathscr{L}(\theta) &= -\log p(Y|X;\theta) \\ &= -\sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)})) \end{aligned}$$

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model -> construct your neural network
- Decide the fitting/training objective —> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model —> construct your neural network
- Decide the fitting/training objective --> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

Loss: Negative Log-likelihood

• Loss: the thing you want to minimize

• Negative log-likelihood (NLL) loss

$$\begin{aligned} \mathscr{L}(\theta) &= -\log p(Y|X;\theta) \\ &= -\sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)})) \end{aligned}$$

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model -> construct your neural network
- Decide the fitting/training objective —> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Optimization 101

 $\mathscr{L}(heta)$

How would you go to the very bottom?

 θ

More in-depth discussion, see https://web.stanford.edu/~boyd/cvxbook/.

Optimization Problems

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, \quad i = 1, \dots, m$

• $x = (x_1, \ldots, x_n)$: optimization variables

- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Optimization Problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

 $\begin{array}{ll} \mbox{minimize} & \|Ax-b\|_2^2 \\ \mbox{minimize} & c^Tx \\ \mbox{subject to} & a_i^Tx \leq b_i, \quad i=1,\ldots,m \end{array}$

Convex and Non-Convex

Convex optimization problem

minimize $f_0(x)$ subject to $f_i(x) \le b_i, \quad i = 1, \dots, m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms

A first-order optimization method: Gradient Descent (GD)

- •Update rule for one iteration: $\theta := \theta \alpha \nabla_{\theta} \mathscr{L}(\theta)$
- Learning rate: α
 - If α is small enough, then GD will definitely lead to a smaller loss after the update. However, a too small α needs too many iterations to get the bottom.
 - If α is too big, overshoot! Loss not necessary to decrease.

Local/Global Minima

For convex optimization problem, gradient descent will converge to the global minima.

For general optimization problem, gradient descent will converge to a local minima.

Analytical Gradient

- How to perform GD to minimize NLL loss?
- Derive analytical gradient:
 - For Sigmoid function

g'

$$\begin{aligned} f'(z) &= \frac{d}{dz} \frac{1}{1+e^{-z}} \\ &= \frac{1}{(1+e^{-z})^2} \left(e^{-z}\right) \\ &= \frac{1}{(1+e^{-z})} \cdot \left(1 - \frac{1}{(1+e^{-z})}\right) \\ &= g(z)(1-g(z)). \end{aligned}$$

Analytical Gradient

- How to perform GD to minimize NLL loss?
- Derive analytical gradient:

$$\begin{aligned} \mathscr{L} &= -\sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \\ \frac{\partial \mathscr{L}}{\partial \theta_{j}} &= -\sum \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) \frac{\partial}{\partial \theta_{j}} g(\theta^{T}x) \\ &= -\sum \left(y \frac{1}{g(\theta^{T}x)} - (1 - y) \frac{1}{1 - g(\theta^{T}x)} \right) g(\theta^{T}x) (1 - g(\theta^{T}x)) \frac{\partial}{\partial \theta_{j}} \theta^{T}x \\ &= -\sum \left(y(1 - g(\theta^{T}x)) - (1 - y)g(\theta^{T}x) \right) x_{j} \\ &= -\sum \left(y - h_{\theta}(x) \right) x_{j} \end{aligned}$$

Non-Linear and Non-Convex Optimization

Naive gradient descent will trap at local minima.

Non-convex energy landscape

Batch Gradient Descent vs. Stochastic Gradient Descent

- Batch Gradient Descent
- Stochastic Gradient Descent (SGD, or Mini-batch Gradient Descent)

Take all data and label pairs in the training set to calculate the gradient.

-: very slow

-: easily get trapped at local minima

Randomly sample N pairs as a batch from the training data and then compute the average gradient from them.

+: fast

+: can get out of local minima

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W)$$

Non-Linear and Non-Convex Optimization

SGD has the potential to jump out of a local minima.

Non-convex energy landscape

Outline

- Set up the task
- Prepare the data -> Need a labeled dataset.
- Built a model -> construct your neural network
- Decide the fitting/training objective —> Loss function
- Perform fitting —> Training by running optimization
- Testing —> Evaluating on test data

Testing and Evaluation

- After training, we need to know how well our model generalizes to unseen data or test data.
- Evaluate the classification accuracy on the test split.
- Will we still work well?

Generalization gap!

Multilayer Perceptron

Problem with Single-Layer Network

- $g(\theta^T x) = 0$ is a hyperplane in the space of x
- can only handle linear separable cases

Linear separable

Linear non-separable

Multi-Layer Perceptron (MLP)

- MLP: Stacking linear layer and nonlinear activations.
- Through many non-linear layers, transform a linear nonseparable problem to linear separable at the last layer

Classification function with MLP

$$f(x;\theta) = Wx + b$$

Linear function

$$f(x; \theta) = g(W_2g(W_1x + b_1) + b_2)$$
 2-layer MLP,
or fully-connected layers

In practice, we can concat the input variables with extract 1 for learning bias.

Classification function with MLP

How can we obtain the parameters/weights of the MLP?

Classification function with MLP

1. Initialization: randomly generate the weights $\mathbf{W}_1 \in \mathbb{R}^{784 \times 128}, \mathbf{W}_2 \in \mathbb{R}^{128 \times 10}$

Analytical Gradient?

So, if we can compute the gradient $\frac{\partial \mathbf{L}}{\partial \mathbf{W}_1}, \frac{\partial \mathbf{L}}{\partial \mathbf{W}_2}$, then we can update $\mathbf{W}_1, \mathbf{W}_2$

An intuitive idea : Derive
$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}}$$
 by hand

However:

- Lots of matrix calculus
- Infeasible: any modification requires re-derivation

Backpropagation with a toy example

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

With input (-2, 5, -4)

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

$$f(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z}$$

Downstream gradient

Downstream gradient

implemented with simple matrix operations

"Backpropagation for a Linear Layer" from Justin 2017

Activation functions

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

10

Slides credit: Stanford CS231N

Activation Function

Activation functions

Slides credit: Stanford CS231N

ReLU is a good default choice for most problems

Leaky ReLU $\max(0.1x, x)$

-10 -11 10

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Review

Neural networks: Architectures

Slides credit: Stanford CS231N

Problems for Using MLP to Process Vision Signals

- Flatten an image into a vector would be very expensive for high resolution images
- Flattening operation breaks the local structure of an image.

Introduction to Computer Vision

Next week: Lecture 5, Deep Learning II

Embodied Perception and InteraCtion Lab

Spring 2025

