
Embodied Perception and InteraCtion Lab Spring 2025

Prof. He Wang

Introduction to Computer Vision

Lecture 4 - Deep Learning I

Logistics

• Assignment 1: to release on 3/14 (this Friday evening), due on 3/29 11:59PM
(Saturday)

• Implementing convolution operation
• Canny edge detector
• Harris corner detector
• Plane fitting using RANSAC

• Some functions are required to be implemented without for loop.

• If 1 day (0 - 24 hours) past the deadline, 15% off
• If 2 day (24 - 48 hours) past the deadline, 30% off
• Zero credit if more than 2 days.

3

Choices of Window Functions

 is not rotation-invariant.w

M(x0, y0) = [
w * I2

x w * IxIy

w * IxIy w * I2
y] M(x0, y0) = [

gσ * I2
x gσ * IxIy

gσ * IxIy gσ * I2
y]

or

Rectangle “hard” window Isotropic “soft” window

is rotation-invariant.gσ

gσ(x, y) =

4

Using Gaussian Filter

M(x0, y0) = [
gσ * I2

x gσ * IxIy

gσ * IxIy gσ * I2
y] = [

g(I2
x) g(IxIy)

g(IxIy) g(I2
y)]

∴ θ(x0, y0) = det(M(x0, y0)) − αTr(M(x0, y0))2 − t

gσ(x, y) =

= (g(I2
x)g(I2

y) − [g(IxIy)]2) − α[g(I2
x) + g(I2

y)]2 − t

5

The Whole Process of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function

5. Thresholding to obtain a binary mask θ(x0, y0) > 0

θ = g(I2
x)g(I2

y) − [g(IxIy)]2 − α[g(I2
x) + g(I2

y)]2 − t

6. Non-maximum suppression θ

I

• Corner response is equivariant with both translation and image
rotation.

6

Properties of Harris Detector

Image borrowed from Stanford CS131

Equivariance and Invariance

If , and is a func,on,X ∈ V f : V → V

T[f(X)] = f(T(X))

 to be equivariant under if f T

and is a transformation operating X, e.g., translation,T : V → V

 to be invariant under if f T

Defini,ons:

f(X) = f(T(X))

8

Check for Equivariance and Invariance

M(x0, y0) = [
gσ * I2

x gσ * IxIy

gσ * IxIy gσ * I2
y] = [

g(I2
x) g(IxIy)

g(IxIy) g(I2
y)]gσ(x, y) =

θ(x0, y0) = (g(I2
x)g(I2

y) − [g(IxIy)]2) − α[g(I2
x) + g(I2

y)]2 − t

Tu,vθ(x0, y0) = θ(x0 + u, y0 + v)Transla,on opera,on:

Rota,on opera,on: Rϕθ(x0, y0) = θ(Rϕ[x0, y0]T)

 is equivariant under both rota,on and transla,on!θ

• Input: two images

9

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Compute corner response θ

10

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Thresholding and perform non-maximal suppression

11

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Results

12

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Corner response is equivariant with both translation and image
rotation.

• Not invariant to scale.

13

Properties of Harris Detector

Image borrowed from Stanford CS131

14

Scale Invariant Detectors

Slides borrowed from Stanford CS131Read by Yourself

Feature Description

15

16

Local Descriptors

17

Local Features

18

• A feature is any piece of information which is relevant for
solving the computational task related to a certain application.

53

Feature

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

19

• Based on the features, we
can build a model.

• Heuristic model:
y = (10 − location) × area

54

Model

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

20

• Based on the features, we
can build a model.

• Heuristic model:

• Parametric model:

• when we have some
observations, we can fit

y = (10 − location) × area

y = ϕθ(F)

θ
55

Model

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

21

• Based on the features, we
can build a model.

• Heuristic model:

• Parametric model:

• Deep vision model

y = (10 − location) × area

y = ϕθ(F)

y = ϕθ(I)
56

Model

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

2257

Topic Switch

• Low-level vision
• Image processing
• Edge/corner detection
• Feature extraction

• Mid-level Vision
• Grouping
• Inferring scene geometry (3D reconstruction)
• Inferring camera and object motion

• High-level vision (where deep learning wins!)
• Object recognition
• Scene understanding
• Activity understanding

23

Local Descriptors

24

Local Features

25

• A feature is any piece of information which is relevant for
solving the computational task related to a certain application.

53

Feature

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

26

• Based on the features, we
can build a model.

• Heuristic model:
y = (10 − location) × area

54

Model

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

27

• Based on the features, we
can build a model.

• Heuristic model:

• Parametric model:

• when we have some
observations, we can fit

y = (10 − location) × area

y = ϕθ(F)

θ
55

Model

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

28

• Based on the features, we
can build a model.

• Heuristic model:

• Parametric model:

• Deep vision model

y = (10 − location) × area

y = ϕθ(F)

y = ϕθ(I)
56

Model

How much is this house?

Useful features :
• Location
• Size
• Building time
• Current condition
• House style
• …

F

2957

Topic Switch

• Low-level vision
• Image processing
• Edge/corner detection
• Feature extraction

• Mid-level Vision
• Grouping
• Inferring scene geometry (3D reconstruction)
• Inferring camera and object motion

• High-level vision (where deep learning wins!)
• Object recognition
• Scene understanding
• Activity understanding

Machine Learning 101

31

From Line Fitting to Neural Network Training

• Line fitting: we know the relationship
is a line, so we use to fit y = mx + b
(m, n)

• When we have some observations , we want to
find the relationship behind and .

{(x, y)}
y x

32

From Line Fitting to Neural Network Training

• Line fitting: we know the relationship
is a line, so we use to fit

.

• Training neural network: similarly, we
use a parametric model to
fit, however we usually have less
understanding of .

y = mx + b
(m, n)

y = hθ(x)

hθ

• When we have some observations , we want to
find the relationship behind and .

{(x, y)}
y x

Is this a 5?

0.99 (yes)

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

34

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

h(θ)
Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

Yes or No

;

35

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

Probability
of being a 5
p(y = 1 |x)

h(θ);

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

Data

From MNIST dataset

• 70000 images in total

• Basic elements of One Data
Point

• One digit image :
 pixels

• Paired with a label

• Training data , labels

x(i)

28 × 28

y(i) ∈ {0,1}

X Y

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

• Image : flatten to a one-dimensional vector

• Classification function:

• Let’s assume a linear function

• Here we need a function to convert
 to

28 × 28
x ∈ ℝ784

h(x) = g(θT x)

g(z)
z = wT x ∈ (−∞, ∞) (0,1)

Model: Logistic Regression

Sigmoid Function

g(z) =
1

1 + e−z

Sigmoid function

f(x) = g(θT x)Final model:

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

• In statistics, maximum likelihood estimation (MLE) is a method
of estimating the parameters of an assumed probability distribution, given
some observed data.

•This is achieved by maximizing a likelihood function so that, under the
assumed statistical model, the observed data is most probable.

•The point in the parameter space (network weight) that maximizes the
likelihood function is called the maximum likelihood estimate.

θ

Maximum Likelihood Estimation

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Point_estimate
https://en.wikipedia.org/wiki/Parameter_space

43

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

p(y = 1 |x)

h(θ);

• Classification function:

• Writing more compactly to handle both and ,y = 0 y = 1

Probability of One Data Point

p(y = 1 |x; θ) = hθ(x)

p(y = 0 |x; θ) = 1 − hθ(x)

• Assume all the data points are independent, then

Probability of All Data Points

p(Y |X; θ) =
n

∏
i=1

p(y(i) |x(i); θ) =
n

∏
i=1

(hθ(x(i)))y(i)(1 − hθ(x(i)))1−y(i)

log p(Y |X; θ) =
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))

• Loss: the thing you want to minimize

• Negative log-likelihood (NLL) loss

Loss: Negative Log-likelihood

ℒ(θ) = − log p(Y |X; θ)

= −
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

49

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits

Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

Probability
of being a 5
p(y = 1 |x)

h(θ)；

• Loss: the thing you want to minimize

• Negative log-likelihood (NLL) loss

Loss: Negative Log-likelihood

ℒ(θ) = − log p(Y |X; θ)

= −
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

Optimization 101

How would you go
to the very
bottom?

ℒ(θ)

θ
More in-depth discussion, see
https://web.stanford.edu/~boyd/cvxbook/.

Optimization Problems

Optimization Problems

Convex and Non-Convex

Gradient Descent

A first-order optimization method: Gradient Descent (GD)

•Update rule for one iteration:

• Learning rate:
• If is small enough, then GD will definitely lead to a smaller loss

after the update. However, a too small needs too many iterations
to get the bottom.

• If is too big, overshoot! Loss not necessary to decrease.

α
α

α

α

θ := θ − α∇θℒ(θ)

Local/Global Minima

For convex optimization
problem, gradient descent
will converge to the global
minima.

For general optimization
problem, gradient descent
will converge to a local
minima. Local minima

Global minima

• How to perform GD to minimize NLL loss?

• Derive analytical gradient:
• For Sigmoid function

Analytical Gradient

• How to perform GD to minimize NLL loss?

• Derive analytical gradient:

Analytical Gradient

ℒ = −
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))

∂ℒ
∂θj

= − ∑
= − ∑
= − ∑
= − ∑

Non-Linear and Non-Convex Optimization

Non-convex energy landscape

Naive gradient descent
will trap at local minima.

• Batch Gradient Descent

Take all data and label pairs in
the training set to calculate
the gradient.
-: very slow
-: easily get trapped at local
minima

Batch Gradient Descent vs. Stochastic Gradient Descent

Randomly sample N pairs as a batch from
the training data and then compute the
average gradient from them.
+: fast
+: can get out of local minima

• Stochastic Gradient Descent (SGD,
or Mini-batch Gradient Descent)

Non-Linear and Non-Convex Optimization

Non-convex energy landscape

SGD has the potential to
jump out of a local
minima.

• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective —> Loss function

• Perform fitting —> Training by running optimization

• Testing —> Evaluating on test data

• Prepare the data —> Need a labeled dataset.

• After training, we need to know how well our model
generalizes to unseen data or test data.

• Evaluate the classification accuracy on the test split.

• Will we still work well?

Testing and Evaluation

Generalization gap!

Multilayer Perceptron

• is a hyperplane in the space of
• can only handle linear separable cases

g(θT x) = 0 x

Problem with Single-Layer Network

Linear separable Linear non-separable

Multi-Layer Perceptron (MLP)

Input OutputHidden layer

W1 Wn

• MLP: Stacking linear layer and nonlinear activations.
• Through many non-linear layers, transform a linear non-

separable problem to linear separable at the last layer

Nonlinear activation

……

Hidden layer

Nonlinear activation
Linear/nonlinear

activation

Classification function with MLP

Linear function

f(x; θ) = g(W2g(W1x + b1) + b2) 2-layer MLP，
or fully-conncted layers

In practice, we can concat the input variables with extract 1 for
learning bias.

f(x; θ) = Wx + b

Classification function with MLP

Input of

784 Dim

128 Dim

1 Dim

Output

Hidden vector

W1, b1

How can we obtain the parameters/weights of the MLP?

W2, b2

W1 ∈ ℝ784×128, W2 ∈ ℝ128×1

b1 ∈ ℝ128, b2 ∈ ℝ

Classification function with MLP

2.Forwarding:

1.Initialization: randomly generate the weights

3.Gradient
decent:

Update weights

ℒ(y, y*)

Gradient
∂ℒ
∂θ

θnew

Analytical Gradient?

So, if we can compute the gradient , then we can update

An intuitive idea : Derive by hand

However:
• Lots of matrix calculus
• Infeasible: any modification requires re-derivation

Backpropagation with a toy example

Let we consider a toy example:

+
×

And we want

(Computational graph)

Backpropagation with a toy example

Let we consider a toy example:

With input (-2, 5, -4)

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3
And we have the derivation

Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3

Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3

Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3
?

Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3
?

Chain rule

Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3

Chain rule

Chain rule

g

Chain rule

Local gradient

g

Chain rule

g

Local gradient

Upstream gradient

f

Chain rule

Local gradient

fg

Upstream gradient

Downstream gradient

Chain rule

Local gradient

fg

Upstream gradient

Downstream gradient
The backpropagation can be efficiently
implemented with simple matrix operations

“Backpropagation for a Linear Layer” from Justin 2017

Activation Function

Slides credit: Stanford CS231N

Activation Function

Slides credit: Stanford CS231N

Review

Slides credit: Stanford CS231N

Problems for Using MLP to Process Vision Signals

• Flatten an image into a vector would
be very expensive for high resolution
images

• Flattening operation breaks the local
structure of an image.

Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 5,
Deep Learning II

Introduction to Computer Vision

