
Embodied Perception and InteraCtion Lab Spring 2025

Prof. He Wang

Introduction to Computer Vision

Lecture 4 - Deep Learning I



Logistics

• Assignment 1: to release on 3/14 (this Friday evening), due on 3/29 11:59PM 
(Saturday) 

• Implementing convolution operation 
• Canny edge detector 
• Harris corner detector 
• Plane fitting using RANSAC 

• Some functions are required to be implemented without for loop. 

• If 1 day (0 - 24 hours) past the deadline, 15% off 
• If 2 day (24 - 48 hours) past the deadline, 30% off 
• Zero credit if more than 2 days.
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Choices of Window Functions

 is not rotation-invariant.w

M(x0, y0) = [
w * I2

x w * IxIy

w * IxIy w * I2
y ] M(x0, y0) = [

gσ * I2
x gσ * IxIy

gσ * IxIy gσ * I2
y ]

or

Rectangle “hard” window Isotropic “soft” window

is rotation-invariant.gσ

gσ(x, y) =
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Using Gaussian Filter

M(x0, y0) = [
gσ * I2

x gσ * IxIy

gσ * IxIy gσ * I2
y ] = [

g(I2
x ) g(IxIy)

g(IxIy) g(I2
y )]

∴ θ(x0, y0) = det(M(x0, y0)) − αTr(M(x0, y0))2 − t

gσ(x, y) =

= (g(I2
x )g(I2

y ) − [g(IxIy)]2) − α[g(I2
x ) + g(I2

y )]2 − t
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The Whole Process of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function

5. Thresholding to obtain a binary mask  θ(x0, y0) > 0

θ = g(I2
x )g(I2

y ) − [g(IxIy)]2 − α[g(I2
x ) + g(I2

y )]2 − t

6. Non-maximum suppression θ

I



• Corner response is equivariant with both translation and image 
rotation.
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Properties of Harris Detector

Image borrowed from Stanford CS131



Equivariance and Invariance

If ,  and  is a func,on,X ∈ V f : V → V

T[ f(X)] = f(T(X))

 to be equivariant under  if f T

and  is a transformation operating X, e.g., translation,T : V → V

 to be invariant under  if f T

Defini,ons: 

f(X) = f(T(X))
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Check for Equivariance and Invariance

M(x0, y0) = [
gσ * I2

x gσ * IxIy

gσ * IxIy gσ * I2
y ] = [

g(I2
x ) g(IxIy)

g(IxIy) g(I2
y )]gσ(x, y) =

θ(x0, y0) = (g(I2
x )g(I2

y ) − [g(IxIy)]2) − α[g(I2
x ) + g(I2

y )]2 − t

Tu,vθ(x0, y0) = θ(x0 + u, y0 + v)Transla,on opera,on: 

Rota,on opera,on: Rϕθ(x0, y0) = θ(Rϕ[x0, y0]T)

 is equivariant under both rota,on and transla,on!θ



• Input: two images
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Compute corner response θ
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Thresholding and perform non-maximal suppression
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Results
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Corner response is equivariant with both translation and image 
rotation. 

• Not invariant to scale.
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Properties of Harris Detector

Image borrowed from Stanford CS131
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Scale Invariant Detectors

Slides borrowed from Stanford CS131Read by Yourself



Feature Description
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Local Descriptors



17

Local Features
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• A feature is any piece of information which is relevant for 
solving the computational task related to a certain application.

53

Feature

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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• Based on the features, we 
can build a model. 

• Heuristic model:
y = (10 − location) × area

54

Model

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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• Based on the features, we 
can build a model. 

• Heuristic model:
 

• Parametric model:
 

• when we have some 
observations, we can fit 

y = (10 − location) × area

y = ϕθ(F)

θ
55

Model

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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• Based on the features, we 
can build a model. 

• Heuristic model:
 

• Parametric model:
 

• Deep vision model 

y = (10 − location) × area

y = ϕθ(F)

y = ϕθ(I)
56

Model

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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Topic Switch

• Low-level vision 
• Image processing 
• Edge/corner detection 
• Feature extraction 

• Mid-level Vision 
• Grouping 
• Inferring scene geometry (3D reconstruction) 
• Inferring camera and object motion 

• High-level vision (where deep learning wins!) 
• Object recognition 
• Scene understanding 
• Activity understanding
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Local Descriptors
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Local Features
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• A feature is any piece of information which is relevant for 
solving the computational task related to a certain application.

53

Feature

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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• Based on the features, we 
can build a model. 

• Heuristic model:
y = (10 − location) × area

54

Model

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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• Based on the features, we 
can build a model. 

• Heuristic model:
 

• Parametric model:
 

• when we have some 
observations, we can fit 

y = (10 − location) × area

y = ϕθ(F)

θ
55

Model

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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• Based on the features, we 
can build a model. 

• Heuristic model:
 

• Parametric model:
 

• Deep vision model 

y = (10 − location) × area

y = ϕθ(F)

y = ϕθ(I)
56

Model

How much is this house?

Useful features : 
• Location 
• Size 
• Building time 
• Current condition 
• House style 
• …

F
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Topic Switch

• Low-level vision 
• Image processing 
• Edge/corner detection 
• Feature extraction 

• Mid-level Vision 
• Grouping 
• Inferring scene geometry (3D reconstruction) 
• Inferring camera and object motion 

• High-level vision (where deep learning wins!) 
• Object recognition 
• Scene understanding 
• Activity understanding



Machine Learning 101
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From Line Fitting to Neural Network Training

• Line fitting: we know the relationship 
is a line, so we use  to fit y = mx + b
(m, n)

• When we have some observations , we want to 
find the relationship behind  and .

{(x, y)}
y x
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From Line Fitting to Neural Network Training

• Line fitting: we know the relationship 
is a line, so we use  to fit 

. 

• Training neural network: similarly, we 
use a parametric model  to 
fit, however we usually have less 
understanding of .

y = mx + b
(m, n)

y = hθ(x)

hθ

• When we have some observations , we want to 
find the relationship behind  and .

{(x, y)}
y x

Is this a 5?

0.99 (yes)



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



34

Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits 

h( θ)
Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

Yes or No

;
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Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits 

Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

Probability 
of being a 5
p(y = 1 |x)

h( θ);



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



Data

From MNIST dataset  

• 70000 images in total 

• Basic elements of One Data 
Point 

• One digit image : 
 pixels 

• Paired with a label 
 

• Training data , labels   

x(i)

28 × 28

y(i) ∈ {0,1}

X Y



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



• Image : flatten to a one-dimensional vector 
 

• Classification function: 

• Let’s assume a linear function   

• Here we need a function  to convert 
 to 

28 × 28
x ∈ ℝ784

h(x) = g(θT x)

g(z)
z = wT x ∈ (−∞, ∞) (0,1)

Model: Logistic Regression



Sigmoid Function

g(z) =
1

1 + e−z

Sigmoid function

f(x) = g(θT x)Final model:



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



• In statistics, maximum likelihood estimation (MLE) is a method 
of estimating the parameters of an assumed probability distribution, given 
some observed data. 

•This is achieved by maximizing a likelihood function so that, under the 
assumed statistical model, the observed data is most probable. 

•The point in the parameter space (network weight ) that maximizes the 
likelihood function is called the maximum likelihood estimate.

θ

Maximum Likelihood Estimation

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Point_estimate
https://en.wikipedia.org/wiki/Parameter_space
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Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits 

Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

p(y = 1 |x)

h( θ);



• Classification function: 

• Writing more compactly to handle both  and ,y = 0 y = 1

Probability of One Data Point

p(y = 1 |x; θ) = hθ(x)

p(y = 0 |x; θ) = 1 − hθ(x)



• Assume all the data points are independent, then

Probability of All Data Points

p(Y |X; θ) =
n

∏
i=1

p(y(i) |x(i); θ) =
n

∏
i=1

(hθ(x(i)))y(i)(1 − hθ(x(i)))1−y(i)

log p(Y |X; θ) =
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))



• Loss: the thing you want to minimize 

• Negative log-likelihood (NLL) loss

Loss: Negative Log-likelihood

ℒ(θ) = − log p(Y |X; θ)

= −
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.
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Task: Binary Classification — Is This Digit a 5?

MINIST Dataset of handwritten digits 

Model

?

Output

Parameters or weights

x =

y ∈ {0,1}

Data

Probability 
of being a 5
p(y = 1 |x)

h( θ)；



• Loss: the thing you want to minimize 

• Negative log-likelihood (NLL) loss

Loss: Negative Log-likelihood

ℒ(θ) = − log p(Y |X; θ)

= −
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



Optimization 101

How would you go 
to the very 
bottom?

ℒ(θ)

θ
More in-depth discussion, see 
https://web.stanford.edu/~boyd/cvxbook/.



Optimization Problems



Optimization Problems



Convex and Non-Convex



Gradient Descent

A first-order optimization method: Gradient Descent (GD) 

•Update rule for one iteration:  

• Learning rate:  
• If  is small enough, then GD will definitely lead to a smaller loss 

after the update. However, a too small  needs too many iterations 
to get the bottom. 

• If  is too big, overshoot! Loss not necessary to decrease.

α
α

α

α

θ := θ − α∇θℒ(θ)



Local/Global Minima

For convex optimization 
problem, gradient descent 
will converge to the global 
minima. 

For general optimization 
problem, gradient descent 
will converge to a local 
minima. Local minima

Global minima



• How to perform GD to minimize NLL loss? 

• Derive analytical gradient: 
• For Sigmoid function

Analytical Gradient



• How to perform GD to minimize NLL loss? 

• Derive analytical gradient:

Analytical Gradient

ℒ = −
n

∑
i=1

y(i) log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))

∂ℒ
∂θj

= − ∑
= − ∑
= − ∑
= − ∑



Non-Linear and Non-Convex Optimization

Non-convex energy landscape

Naive gradient descent 
will trap at local minima.



• Batch Gradient Descent 

Take all data and label pairs in 
the training set to calculate 
the gradient. 
-: very slow 
-: easily get trapped at local 
minima

Batch Gradient Descent vs. Stochastic Gradient Descent

Randomly sample N pairs as a batch from 
the training data and then compute the 
average gradient from them. 
+: fast 
+: can get out of local minima

• Stochastic Gradient Descent (SGD, 
or Mini-batch Gradient Descent)



Non-Linear and Non-Convex Optimization

Non-convex energy landscape

SGD has the potential to 
jump out of a local 
minima.



• Set up the task

Outline

• Built a model —> construct your neural network

• Decide the fitting/training objective   —> Loss function

• Perform fitting   —> Training by running optimization 

• Testing    —>   Evaluating on test data

• Prepare the data —> Need a labeled dataset.



• After training, we need to know how well our model 
generalizes to unseen data or test data. 

• Evaluate the classification accuracy on the test split. 

• Will we still work well?

Testing and Evaluation

Generalization gap!



Multilayer Perceptron



•  is a hyperplane in the space of   
• can only handle linear separable cases

g(θT x) = 0 x

Problem with Single-Layer Network

Linear separable Linear non-separable



Multi-Layer Perceptron (MLP)

Input OutputHidden layer

W1 Wn

• MLP: Stacking linear layer and nonlinear activations. 
• Through many non-linear layers, transform a linear non-

separable problem to linear separable at the last layer

Nonlinear activation

……

Hidden layer

Nonlinear activation
Linear/nonlinear  

activation



Classification function with MLP

Linear function

f(x; θ) = g(W2g(W1x + b1) + b2) 2-layer MLP， 
or fully-conncted layers 

In practice, we can concat the input variables with extract 1 for 
learning bias.

f(x; θ) = Wx + b



Classification function with MLP

Input of

784 Dim

128 Dim

1 Dim

Output

Hidden vector

W1, b1

How can we obtain the parameters/weights of the MLP?

W2, b2

W1 ∈ ℝ784×128, W2 ∈ ℝ128×1

b1 ∈ ℝ128, b2 ∈ ℝ



Classification function with MLP

2.Forwarding:

1.Initialization: randomly generate the weights

3.Gradient  
decent:

Update weights

ℒ(y, y*)

Gradient 
∂ℒ
∂θ

θnew



Analytical Gradient?

So, if we can compute the gradient  , then we can update 

An intuitive idea : Derive by hand

However: 
• Lots of matrix calculus 
• Infeasible: any modification requires re-derivation 



Backpropagation with a toy example

Let we consider a toy example:

+
×

And we want

(Computational graph)



Backpropagation with a toy example

Let we consider a toy example:

With input (-2, 5, -4) 

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3
And we have the derivation



Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4



Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3



Backpropagation with a toy example
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Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3
?



Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3
?

Chain rule



Backpropagation with a toy example

Let we consider a toy example:

+
×

-2

5

-4

3

-12
1

-4

-4

-4

-3

Chain rule



Chain rule

g



Chain rule

Local gradient

g



Chain rule

g

Local gradient

Upstream gradient

f



Chain rule

Local gradient

fg

Upstream gradient

Downstream gradient



Chain rule

Local gradient

fg

Upstream gradient

Downstream gradient
The backpropagation can be efficiently 
implemented with simple matrix operations

“Backpropagation for a Linear Layer” from Justin 2017



Activation Function

Slides credit: Stanford CS231N



Activation Function

Slides credit: Stanford CS231N



Review

Slides credit: Stanford CS231N



Problems for Using MLP to Process Vision Signals

• Flatten an image into a vector would 
be very expensive for high resolution 
images 

• Flattening operation breaks the local 
structure of an image.



Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 5,  
Deep Learning II

Introduction to Computer Vision


