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Start with A Task: Lane Detection

How to detect the lane?

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023



• Edge detector
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Start with Detecting Edges

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03
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Summary of Canny Edge Detection

• Edge: where pixel intensity changes drastically 
• Jointly detecting edge and smoothing by convolving with the 

derivative of a Gaussian filter 
• Non-maximal suppression 
• Thresholding and linking (hysteresis):



Line Fitting
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• Many objects are characterized by presence of straight lines 
• Detect lines?
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Line Detection
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Challenge of Line Detection

• Aren’t we done just by doing edge detection?
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Challenge of Line Detection

• Aren’t we done just by doing edge detection? 
• No, there are many problems: 

• Occlusion 
• Not a straight line  
• Multiple lines, which one?
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Line Fitting: Least Square Method
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Line Fitting: Least Square Method
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Line Fitting: Least Square Method
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Line Fitting for the General Equation of a Line

A =

x1, y1,1. . .
xi, yi,1. . .
xn, yn,1

h = [
a
b
d]



13

Line Fitting for the General Equation of a Line

To avoid trivial solution , we need a constraint for h = 0 h
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Line Fitting for the General Equation of a Line

Solve h using Singular Value Decomposition (SVD):

Optimization problem:

An×3 = Un×nDn×3VT
3×3

where  and  are orthogonal matrices (  and ),Un×n V3×3 VTV = I3×3 V = [c1, c2, c3]

D = [diag{λ1, λ2, λ3}
O ] and . |λ1 | > |λ2 | > |λ3 |

SVD is an extension of Eigenvalue decomposition (only works for 
square matrices ) to general matrices  .An×n An×m
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Line Fitting for the General Equation of a Line

Solve h using Singular Value Decomposition (SVD):

Optimization problem:

An×3 = Un×nDn×3VT
3×3

Given  (note  forms an orthogonal basis), 

then    

VT
3×3 =

cT
1

cT
2

cT
3

{ci}

h = α1c1 + α2c2 + α3c3 (note α2
1 + α2

2 + α2
3 = 1 since | |h | | = 1)

∴ Ah = Un×nDn×3VT
3×3h3×1 = Un×nDn×3

α1
α2
α3

= Un×n [diag{λ1α1, λ2α2, λ3α3}
O ]
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Line Fitting for the General Equation of a Line

Solve h using Singular Value Decomposition (SVD):

Optimization problem:

An×3 = Un×nDn×3VT
3×3

Ah = Un×nDn×3VT
3×3h3×1 = Un×nDn×3

α1
α2
α3

= Un×n [diag{λ1α1, λ2α2, λ3α3}
O ]

∴ ∥Ah∥2 = [diag{λ1α1, λ2α2, λ3α3}
O ]

2

= (λ1α1)2 + (λ2α2)2 + (λ3α3)2

α2
1 + α2

2 + α2
3 = 1 and |λ1 | > |λ2 | > |λ3 | ,Note ∴ ∥Ah∥2 ≥ λ2

3

(Orthogonal matrix U doesn’t affect the norm)
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Summary: Line Fitting for the General Equation of a Line

A =

x1, y1,1. . .
xi, yi,1. . .
xn, yn,1

h = [
a
b
d]

Optimization problem:

Analytical solution of h using SVD: An×3 = Un×nDn×3VT
3×3

D = [diag{λ1, λ2, λ3}
O ] and . |λ1 | > |λ2 | > |λ3 |

where  and  are orthogonal matrices (  and ),Un×n V3×3 VTV = I3×3 V = [c1, c2, c3]

h = c3Final solution: (last column of  )V                 
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Robustness

Robust to small noises. Sensitive to outliers.



• Idea: we need to find a line that has the largest supporters (or 
inliers)
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RANSAC: RANdom SAmple Consensus 
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RANSAC Line Fitting
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RANSAC Line Fitting
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RANSAC Line Fitting
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RANSAC Line Fitting
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RANSAC Line Fitting
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RANSAC Line Fitting
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RANSAC Line Fitting

This is a sequential version,  you should implement a parallel version.
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RANSAC: How Many Samples?

Edited from David Lowe

⇒ Choose the minimal  for solving a hypothesisn

⇒ Choose   high enough to keep the prob. below a desired failure rate k
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After RANSAC
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RANSAC: Pro and Con
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From the Perspective of Voting

Given points in the vector space, 
find (m,n) in the parameter space

Define a inlier threshold 
distance in the vector space, 
each point votes for the best 
hypothesis.

RANSAC

Read by Yourself
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Hough Transform

Given points in the vector space, 
find (m,n) in the parameter space

The intersection in the 
parameter space is (m, n)

Hough spaceOriginal space

Read by Yourself



Hough Transform w/o Noise

Ground truth: y= -0.4106 x + 0.0612 
Fitted result:  y = -0.412 x + 0.060   Read by Yourself



Hough Transform w/ Noise and Outliers

Ground truth: y= -0.4106 x + 0.0612 
Fitted result:  y = -0.412 x + 0.076   Read by Yourself



From the Perspective of Voting

RANSAC

Voting in the  
original space

Hough transform

  m

Voting in the  
parameter space

Read by Yourself



RANSAC 
• Single mode: robust for 

outliers

Robust Fitting：RANSAC vs. Hough Transform

Hough Transform 
• Less robust compared to 

RANSAC (spurious peak) 
• Can handle multiple modes well

Parsa, Younes, Hasan Hosseinzadeh, and Mehdi Effatparvar. "Development Hough transform to detect straight lines 
using pre-processing filter." International Journal of Information, Security and Systems Management 4.2 (2015): 
448-456.

Read by Yourself
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Summary of Line Detection

• A modular based approach: gradient -> edge -> line 
• Need high robustness for every module, e.g., denoising in gradient image, 

robust line fitting 



Corner Detection

Some slides are borrowed from Stanford CS131.
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• In addition to edges, keypoints are also important to detect.
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Keypoint Localization
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Applications: Image Matching

Separately detect keypoints and then find matching.

Slide borrowed from Stanford CS131



• Saliency: interesting points
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What Points are Keypoints?

Image borrowed from Stanford CS131



• Saliency: interesting points 
• Repeatability: detect the same point independently in both 

images
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More Requirements

Image borrowed from Stanford CS131



• Repeatability: detect the same point independently in both 
images 

• Saliency: interesting points 
• Accurate localization
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More Requirements

Image borrowed from Stanford CS131



• Repeatability: detect the same point independently in both 
images 

• Saliency: interesting points 
• Accurate localization 
• Quantity: sufficient number
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More Requirements

Image borrowed from Stanford CS131
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Repeatability and Invariance

• For a keypoint detector to be 
repeatable, it has to be invariant to: 

• Illumination 
• Image scale 
• Viewpoint

Image borrowed from Stanford CS131



• Corners are such kind of keypoints, because they are 
• Salient; 
• Repeatable (one corner would still be a corner from another viewpoint); 
• Sufficient (usually an image comes with a lot of corners); 
• Easy to localize.
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Corners as Keypoints

Image borrowed from Stanford CS131



• The key property of a corner: In the region around a 
corner, image gradient has two or more dominant 
directions
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The Properties of a Corner

Image borrowed from Stanford CS131



• Move a window and explore intensity changes within the window 
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The Basic Idea of Harris Corner

Flat region: no 
change in all 
directions

Edge: no change 
along the edge 
direction

Corner: 
significant 
change in all 
directions

Image borrowed from Stanford CS131
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The Basic Idea of Harris Corner

Original image
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The Basic Idea of Harris Corner

(x0, y0)
Local neighborhood of 
a corner point (x0, y0)
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The Basic Idea of Harris Corner

(x0, y0)

(x0+u, y0+v)

Move the window by 
(u, v)



51

The Basic Idea of Harris Corner

Local neighborhood of 
a corner point (x0, y0)

Local neighborhood of 
point (x0+u, y0+v)
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The Basic Idea of Harris Corner

—| |
2

After moving (u, v), the squared difference 
within the window

= ∑
(x,y)∈N

[I(x + u, y + v) − I(x, y)]2

Where N is the neighborhood of (x0, y0)

=Ex0,y0
(u, v)
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Notation

w′ x0,y0
(x, y) = w(x − x0, y − y0)

Rectangle Window Function

Du,v(x, y) = [I(x + u, y + v) − I(x, y)]2

Square intensity difference

= { 1, if − b < x, y < b
0, else .

Rectangle window function 
when the center is at  (x0, y0)

( : half-width of the window)b
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—| |
2

= ∑
(x,y)∈N

[I(x + u, y + v) − I(x, y)]2

The Basic Idea of Harris Corner Detector

= ∑
x,y

w′ x0,y0
(x, y)[I(x + u, y + v) − I(x, y)]2 = ∑

x,y

w′ x0,y0
(x, y)Du,v(x, y)

= w * Du,v

= ∑
x,y

w(x − x0, y − y0)Du,v(x, y) = ∑
x,y

w(x0 − x, y0 − y)Du,v(x, y)

=Ex0,y0
(u, v)
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Harris Detector

I[x + u, y + v] − I[x, y] ≈ Ixu + Iyv

∴ Du,v(x, y) = (I[x + u, y + v] − I[x, y])2 ≈ (Ixu + Iyv)2

Since  and  are both small, we apply first-order Taylor expansion:u v

= [u, v][
I2
x IxIy

IxIy I2
y ] [u

v]
∴ Ex0,y0

(u, v) = w * Du,v = [u, v] w * [
I2
x IxIy

IxIy I2
y ] [u

v]

Image borrowed from Stanford CS131

A function of x0, y0
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Harris Detector

E(x0,y0)(u, v) ≈ [u, v] M(x0, y0) [u
v]

where M(x, y) = w * [
I2
x IxIy

IxIy I2
y ] = [

w * I2
x w * (IxIy)

w * (IxIy) w * I2
y ]

If we are checking the corner at , then the energy after moving 
the window by (u, v) is:

(x0, y0)

Image borrowed from Stanford CS131



• M is a symmetric matrix. 
• M is a positive semi-definite matrix (since all its principle minors ). 

• Simple case:  is diagonal 

≥ 0
M(x0, y0) :
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Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)

∴ E(x0,y0)(u, v) ≈ [u, v] M(x0, y0)[u
v] = λ1u2 + λ2v2

• This corresponds to an axis-aligned corner. 

• If either , this is not a corner.λ ≈ 0

M(x0, y0) = [λ1 0
0 λ2]

Image borrowed from Stanford CS131

M(x, y) = w * [
I2
x IxIy

IxIy I2
y ] = [

w * I2
x w * (IxIy)

w * (IxIy) w * I2
y ]



• General case:  
   since M is a symmetric square matrix, perform eigenvalue-
decomposition:
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Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)M(x, y) = [
w * I2

x w * (IxIy)

w * (IxIy) w * I2
y ] = Q [λ1 0

0 λ2] QT

 is an orthogonal matrix,  are the eigenvalues of M!Q {λi}



• General case: since M is a symmetric matrix, perform eigen-
decomposition:
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Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)

∴ E(x0,y0)(u, v) ≈ λ1u′ 
2 + λ2v′ 

2 [u′ 

v′ ] = Q [u
v]where

The energy landscape is a paraboloid!

Image borrowed from Stanford CS131

M(x0, y0) = [
w * I2

x w * (IxIy)

w * (IxIy) w * I2
y ] = Q [λ1 0

0 λ2] QT



• Classification of the type of the image point according to the 
eigenvalues of M.
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Eigenvalues

Image borrowed from Stanford CS131

λ1, λ2 > b

1
k

<
λ1

λ2
< k

Two conditions must be satisfied:



• Fast approximation:
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Corner Response Function θ

If k ≈ 3, then α ≈ 0.045

θ =
1
2

(λ1λ2 − 2α(λ1 + λ2)2) +
1
2

(λ1λ2 − 2t)

= λ1λ2 − α(λ1 + λ2)2 − t

1
k

<
λ1

λ2
< k ⟺ λ1λ2 − 2α(λ1 + λ2)2 > 0 and α = 1/2(k + 1/k)2

λ1, λ2 > b ⟺ λ1λ2 − 2t > 0 and t = b2/2

= det(M) − αTr(M)2 − t
Orthogonal transformation won’t change 
the determinant and trace of a matrix 
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Choices of Window Functions

 is not rotation-invariant.w

M(x0, y0) = [
w * I2

x w * IxIy

w * IxIy w * I2
y ] M(x0, y0) = [

gσ * I2
x gσ * IxIy

gσ * IxIy gσ * I2
y ]

or

Rectangle “hard” window Isotropic “soft” window

is rotation-invariant.gσ

gσ(x, y) =
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Using Gaussian Filter

M(x0, y0) = [
gσ * I2

x gσ * IxIy

gσ * IxIy gσ * I2
y ] = [

g(I2
x ) g(IxIy)

g(IxIy) g(I2
y )]

∴ θ(x0, y0) = det(M(x0, y0)) − αTr(M(x0, y0))2 − t

gσ(x, y) =

= (g(I2
x )g(I2

y ) − [g(IxIy)]2) − α[g(I2
x ) + g(I2

y )]2 − t
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The Whole Process of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function

5. Thresholding to obtain a binary mask  θ(x0, y0) > 0

θ = g(I2
x )g(I2

y ) − [g(IxIy)]2 − α[g(I2
x ) + g(I2

y )]2 − t

6. Non-maximum suppression θ

I



Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 4,  
Deep Learning I

Introduction to Computer Vision


