Introduction to Computer Vision

Lecture 3 - Classic Vision II

Prof. He Wang

Embodied Perception and InteraCtion Lab

Spring 2025

Start with A Task: Lane Detection

How to detect the lane?

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023

Start with Detecting Edges

• Edge detector

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03

Summary of Canny Edge Detection

- Edge: where pixel intensity changes drastically
- Jointly detecting edge and smoothing by convolving with the derivative of a Gaussian filter
- Non-maximal suppression
- Thresholding and linking (hysteresis):

Line Fitting

Line Detection

- Many objects are characterized by presence of straight lines
- Detect lines?

Challenge of Line Detection

• Aren't we done just by doing edge detection?

Challenge of Line Detection

- Aren't we done just by doing edge detection?
- No, there are many problems:
 - Occlusion
 - Not a straight line
 - Multiple lines, which one?

Line Fitting: Least Square Method

• Data:
$$(x_1, y_1), ..., (x_n, y_n)$$

• Line equation:
$$y_i - m x_i - b = 0$$

[Eq. 1]

• Find (*m*, *b*) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$
 [Eq. 2]

Line Fitting: Least Square Method

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$
 [Eq. 2]

$$\mathbf{E} = \sum_{i=1}^{n} \left(\mathbf{y}_{i} - \begin{bmatrix} \mathbf{x}_{i} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \mathbf{b} \end{bmatrix} \right)^{2} = \left\| \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \end{bmatrix} - \begin{bmatrix} \mathbf{x}_{1} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{n} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \mathbf{b} \end{bmatrix} \right\|^{2} = \left\| \mathbf{Y} - \mathbf{XB} \right\|^{2}$$
[Eq. 3]

= $(Y - XB)^{T}(Y - XB) = Y^{T}Y - 2(XB)^{T}Y + (XB)^{T}(XB)$ [Eq. 4]

Find $B=[m, b]^T$ that minimizes E

$$\frac{dE}{dB} = -2X^TY + 2X^TXB = 0$$
 [Eq. 5]

$$X^{T}XB = X^{T}Y$$
 [Eq. 7]
Normal equation

$$\mathbf{B} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y} \quad [Eq. 6]$$

Line Fitting: Least Square Method

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$B = (X^T X)^{-1} X^T Y \quad B = \begin{bmatrix} m \\ b \end{bmatrix}$$

[Eq. 6]
Limitations

Fails completely for vertical lines

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$A = \begin{bmatrix} x_1, y_1, 1 \\ \dots \\ x_i, y_i, 1 \\ \dots \\ x_n, y_n, 1 \end{bmatrix} \qquad h = \begin{bmatrix} a \\ b \\ d \end{bmatrix}$$

$$Ah = 0$$
 [Eq. 9]

data model parameters

Ah = 0 A is rank deficient

Minimize ||Ah|| subject to ||h||=1

To avoid trivial solution h = 0, we need a constraint for h

Optimization problem: Minimize ||Ah|| subject to ||h||=1

Solve h using Singular Value Decomposition (SVD):

$$A_{n\times3} = U_{n\times n} D_{n\times3} V_{3\times3}^T$$

where $U_{n \times n}$ and $V_{3 \times 3}$ are orthogonal matrices ($V^T V = I_{3 \times 3}$ and $V = [c_1, c_2, c_3]$), $D = \begin{bmatrix} diag\{\lambda_1, \lambda_2, \lambda_3\} \\ 0 \end{bmatrix} \text{ and } |\lambda_1| > |\lambda_2| > |\lambda_3|.$

SVD is an extension of Eigenvalue decomposition (only works for square matrices $A_{n \times n}$) to general matrices $A_{n \times m}$.

Optimization problem: Minimize ||Ah|| subject to ||h||=1

Solve h using Singular Value Decomposition (SVD): $A_{n\times3} = U_{n\times n}D_{n\times3}V_{3\times3}^T$ Given $V_{3\times3}^T = \begin{bmatrix} c_1^T \\ c_2^T \\ c_3^T \end{bmatrix}$ (note $\{c_i\}$ forms an orthogonal basis), then $h = \alpha_1 c_1 + \alpha_2 c_2 + \alpha_3 c_3$ (note $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$ since ||h|| = 1) $\therefore Ah = U_{n \times n} D_{n \times 3} V_{3 \times 3}^T h_{3 \times 1} = U_{n \times n} D_{n \times 3} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = U_{n \times n} \begin{bmatrix} diag\{\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3\} \\ 0 \end{bmatrix}$

Optimization problem: Minimize ||Ah|| subject to ||h||=1

Solve h using Singular Value Decomposition (SVD): $A_{n\times3} = U_{n\times n}D_{n\times3}V_{3\times3}^T$

$$Ah = U_{n \times n} D_{n \times 3} V_{3 \times 3}^T h_{3 \times 1} = U_{n \times n} D_{n \times 3} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = U_{n \times n} \begin{bmatrix} diag\{\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3\} \\ O \end{bmatrix}$$
$$\therefore \|Ah\|^2 = \left\| \begin{bmatrix} diag\{\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3\} \\ O \end{bmatrix} \right\|^2 = (\lambda_1 \alpha_1)^2 + (\lambda_2 \alpha_2)^2 + (\lambda_3 \alpha_3)^2$$

(Orthogonal matrix U doesn't affect the norm)

Note $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$ and $|\lambda_1| > |\lambda_2| > |\lambda_3|$, $\therefore ||Ah||^2 \ge \lambda_3^2$

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2 \qquad A = \begin{bmatrix} x_1, y_1, 1 \\ \cdots \\ x_i, y_i, 1 \\ \cdots \\ x_n, y_n, 1 \end{bmatrix} \qquad h = \begin{bmatrix} a \\ b \\ d \end{bmatrix}$$

Optimization problem: Minimize ||Ah|| subject to ||h||=1Analytical solution of h using SVD: $A_{n\times 3} = U_{n\times n}D_{n\times 3}V_{3\times 3}^T$ where $U_{n\times n}$ and $V_{3\times 3}$ are orthogonal matrices ($V^TV = I_{3\times 3}$ and $V = [c_1, c_2, c_3]$),

$$D = \begin{bmatrix} diag\{\lambda_1, \lambda_2, \lambda_3\} \\ 0 \end{bmatrix} \text{ and } |\lambda_1| > |\lambda_2| > |\lambda_3|.$$

Final solution:

$$h = c_3$$
 (last column of V)

Robustness

RANSAC: RANdom SAmple Consensus

• Idea: we need to find a line that has the largest supporters (or inliers)

Fischler & Bolles in '81.

• Task: Estimate the best line

- How many points do we need to estimate the line?

• Task: Estimate the best line

Task: Estimate the best line

Task: Estimate the best line

• Task: Estimate the best line

Repeat, until we get a good result.

RANSAC loop:

- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

This is a sequential version, you should implement a parallel version.

RANSAC: How Many Samples?

- How many samples are needed?
 - Suppose *w* is fraction of inliers (points from line).
 - *n* points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of *n* points is correct: *w*^{*n*}
- Prob. that all k samples fail is: $(1 w^n)^k$
 - \Rightarrow Choose the minimal *n* for solving a hypothesis
 - \Rightarrow Choose k high enough to keep the prob. below a desired failure rate

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

RANSAC: Pro and Con

- <u>Pros</u>:
 - General method suited for a wide range of model fitting problems
 - Easy to implement and easy to calculate its failure rate
- <u>Cons</u>:
 - Only handles a moderate percentage of outliers without cost blowing up
 - Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

From the Perspective of Voting

Given points in the vector space, find (m,n) in the parameter space

Define a inlier threshold distance in the vector space, each point votes for the best hypothesis.

Hough Transform

Original space

Given points in the vector space, find (m,n) in the parameter space

Read by Yourself

The intersection in the parameter space is (m, n)

Hough space

Hough Transform w/o Noise

Original space

Hough space

Ground truth: y = -0.4106 x + 0.0612Fitted result: y = -0.412 x + 0.060

Read by Yourself

Hough Transform w/ Noise and Outliers

From the Perspective of Voting

RANSAC

Voting in the original space

Hough transform

Voting in the parameter space

Read by Yourself

Robust Fitting: RANSAC vs. Hough Transform

RANSAC

• Single mode: robust for outliers

Hough Transform

- Less robust compared to RANSAC (spurious peak)
- Can handle multiple modes well

Hough transform image

orginal image

Parsa, Younes, Hasan Hosseinzadeh, and Mehdi Effatparvar. "Development Hough transform to detect straight lines using pre-processing filter." *International Journal of Information, Security and Systems Management* 4.2 (2015): 448-456.

Summary of Line Detection

- A modular based approach: gradient -> edge -> line
- Need high robustness for every module, *e.g.*, denoising in gradient image, robust line fitting

Corner Detection

Some slides are borrowed from Stanford CS131.

Keypoint Localization

• In addition to edges, keypoints are also important to detect.

Applications: Image Matching

Separately detect keypoints and then find matching.

Slide borrowed from Stanford CS131

What Points are Keypoints?

• Saliency: interesting points

More Requirements

- Saliency: interesting points
- Repeatability: detect the same point independently in both images

No chance to match!

More Requirements

- Repeatability: detect the same point independently in both images
- Saliency: interesting points
- Accurate localization

More Requirements

- Repeatability: detect the same point independently in both images
- Saliency: interesting points
- Accurate localization
- Quantity: sufficient number

No chance to match!

Repeatability and Invariance

- For a keypoint detector to be repeatable, it has to be invariant to:
 - Illumination
 - Image scale
 - Viewpoint

Illumination invariance

Pose invariance •Rotation •Affine

Scale

invariance

Corners as Keypoints

- Corners are such kind of keypoints, because they are
 - Salient;
 - Repeatable (one corner would still be a corner from another viewpoint);
 - Sufficient (usually an image comes with a lot of corners);
 - Easy to localize.

The Properties of a Corner

• The key property of a corner: In the region around a corner, image gradient has two or more dominant directions

• Move a window and explore intensity changes within the window

Flat region: no change in all directions Edge: no change along the edge direction Corner: significant change in all directions

Original image

Local neighborhood of a corner point (x0, y0)

Move the window by (u, v)

Local neighborhood of point (x0+u, y0+v)

Local neighborhood of a corner point (x0, y0)

After moving (u, v), the squared difference within the window

Where N is the neighborhood of (x0, y0)

Notation

Square intensity difference

$$D_{u,v}(x, y) = [I(x + u, y + v) - I(x, y)]^2$$

Rectangle Window Function

$$\begin{cases} 1, & if - b < x, y < b \\ 0, & else. \end{cases}$$

(*b*: half-width of the window)

Rectangle window function when the center is at (x_0, y_0)

$$w'_{x_0,y_0}(x,y) = w(x - x_0, y - y_0)$$

The Basic Idea of Harris Corner Detector

 $E_{x_0,y_0}(u,v)=$ = $\sum [I(x + u, y + v) - I(x, y)]^2$ $(x,y) \in N$ $= \sum w'_{x_0, y_0}(x, y) [I(x + u, y + v) - I(x, y)]^2 = \sum w'_{x_0, y_0}(x, y) D_{u, v}(x, y)$ X, Yx, y $= \sum w(x - x_0, y - y_0) D_{u,v}(x, y) = \sum w(x_0 - x, y_0 - y) D_{u,v}(x, y)$ $= \overset{x,y}{w *} D_{u,v}$ x, y

Since u and v are both small, we apply first-order Taylor expansion:

$$I[x + u, y + v] - I[x, y] \approx I_x u + I_y v$$

$$\therefore D_{u,v}(x, y) = (I[x + u, y + v] - I[x, y])^2 \approx (I_x u + I_y v)^2 = [u, v] \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$\therefore E_{x_0, y_0}(u, v) = w * D_{u,v} = [u, v] w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

A function of x_0, y_0

$$\boxed{\Box } \boxed{\Box } \boxed{I_x} \qquad \boxed{I_x} \qquad \boxed{I_y} \qquad \boxed{I_y} \qquad \boxed{I_x I_y}$$

If we are checking the corner at (x_0, y_0) , then the energy after moving the window by (u, v) is:

$$E_{(x_0,y_0)}(u,v) \approx [u,v] M(x_0,y_0) \begin{bmatrix} u \\ v \end{bmatrix}$$

where
$$M(x, y) = w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} w * I_x^2 & w * (I_x I_y) \\ w * (I_x I_y) & w * I_y^2 \end{bmatrix}$$

$$M(x, y) = w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} w * I_x^2 & w * (I_x I_y) \\ w * (I_x I_y) & w * I_y^2 \end{bmatrix}$$

- M is a symmetric matrix.
- M is a positive semi-definite matrix (since all its principle minors ≥ 0).
- Simple case: $M(x_0, y_0)$: is diagonal $M(x_0, y_0) = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ $(\lambda_1 \ge 0, \lambda_2 \ge 0)$

$$\therefore E_{(x_0,y_0)}(u,v) \approx [u,v] M(x_0,y_0) \begin{bmatrix} u \\ v \end{bmatrix} = \lambda_1 u^2 + \lambda_2 v^2$$

- This corresponds to an axis-aligned corner.
- If either $\lambda \approx 0$, this is not a corner.

• General case:

since M is a symmetric square matrix, perform eigenvaluedecomposition:

$$M(x, y) = \begin{bmatrix} w^* I_x^2 & w^* (I_x I_y) \\ w^* (I_x I_y) & w^* I_y^2 \end{bmatrix} = Q \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} Q^T \quad (\lambda_1 \ge 0, \ \lambda_2 \ge 0)$$

Q is an orthogonal matrix, $\{\lambda_i\}$ are the eigenvalues of M!

• General case: since M is a symmetric matrix, perform eigendecomposition:

$$M(x_{0}, y_{0}) = \begin{bmatrix} w * I_{x}^{2} & w * (I_{x}I_{y}) \\ w * (I_{x}I_{y}) & w * I_{y}^{2} \end{bmatrix} = Q \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} Q^{T} \quad (\lambda_{1} \ge 0, \ \lambda_{2} \ge 0)$$

$$\therefore E_{(x_{0},y_{0})}(u, v) \approx \lambda_{1}u'^{2} + \lambda_{2}v'^{2} \quad \text{where } \begin{bmatrix} u' \\ v' \end{bmatrix} = Q \begin{bmatrix} u \\ v \end{bmatrix}$$

Direction of the slowest change biowest change The energy landscape is a paraboloid!

Image borrowed from Stanford CS131

 (λ_{max})

Eigenvalues

• Classification of the type of the image point according to the eigenvalues of M.

Two conditions must be satisfied:

$$\lambda_1, \lambda_2 > b$$

$$\frac{1}{k} < \frac{\lambda_1}{\lambda_2} < k$$

Corner Response Function θ

• Fast approximation: $\lambda_1, \lambda_2 > b \iff \lambda_1 \lambda_2 - 2t > 0$ and $t = b^2/2$ $\theta = \frac{1}{2} (\lambda_1 \lambda_2 - 2\alpha(\lambda_1 + \lambda_2)^2) + \frac{1}{2} (\lambda_1 \lambda_2 - 2t)$ $\frac{1}{k} < \frac{\lambda_1}{\lambda_2} < k \iff \lambda_1 \lambda_2 - 2\alpha(\lambda_1 + \lambda_2)^2 > 0 \text{ and } \alpha = 1/2(k + 1/k)^2$ If $k \approx 3$, then $\alpha \approx 0.045$ 'Edge" $\lambda_2 >> \lambda_1$ λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; $=\lambda_1\lambda_2-\alpha(\lambda_1+\lambda_2)^2-t$ $= det(M) - \alpha Tr(M)^2 - t$ Orthogonal transformation won't change "Flat" "Edge"

the determinant and trace of a matrix

61

region

Choices of Window Functions

Isotropic "soft" window

$$g_{\sigma}(x,y) =$$

Gaussian

w is not rotation-invariant.

 g_σ is rotation-invariant.

$$M(x_0, y_0) = \begin{bmatrix} w * I_x^2 & w * I_x I_y \\ w * I_x I_y & w * I_y^2 \end{bmatrix}$$

$$M(x_0, y_0) = \begin{bmatrix} g_\sigma * I_x^2 & g_\sigma * I_x I_y \\ g_\sigma * I_x I_y & g_\sigma * I_y^2 \end{bmatrix}$$

Using Gaussian Filter

$$\therefore \theta(x_0, y_0) = \det(M(x_0, y_0)) - \alpha Tr(M(x_0, y_0))^2 - t$$
$$= (g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2) - \alpha [g(I_x^2) + g(I_y^2)]^2 - t$$

- 1. Image derivatives
- 2. Square of derivatives
- 3. Rectangle window or Gaussian filter
- 4. Corner response function

$$\theta = g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2 - t$$

- 5. Thresholding to obtain a binary mask $\theta(x_0, y_0) > 0$
- 6. Non-maximum suppression

Introduction to Computer Vision

Next week: Lecture 4, Deep Learning I

Embodied Perception and InteraCtion Lab

Spring 2025

