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Start with A Task: Lane Detection

How to detect the lane?

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023



Start with Detecting Edges

« Edge detector




Summary of Canny Edge Detection

« Edge: where pixel intensity changes drastically

 Jointly detecting edge and smoothing by convolving with the
derivative of a Gaussian filter

* Non-maximal suppression
* Thresholding and linking (hysteresis):




Line Fitting




Line Detection

* Many objects are characterized by presence of straight lines
* Detect lines?




Challenge of Line Detection

* Aren’t we done just by doing edge detection?




Challenge of Line Detection

* Aren’t we done just by doing edge detection?
* No, there are many problems:

* Occlusion

* Not a straight line

* Multiple lines, which one?




Line Fitting: Least Square Method

¢ Data (xl,y1)9 AR (xnﬁyn)

* Line equation:y.—mx,—b =0
[Eq. 1]
* Find (m, b) to minimize

E = z;(yi —mx, —b)’|[Eq. 2]




Line Fitting: Least Square Method

e ]|

y. x 1

E = E; (y, —mx, -b)’  [Eq.2]

2

R Rl

[Eq. 3]

= (Y-XB)"(Y -XB) = Y'Y -2(XB)"Y + (XB)" (XB) [gq. 4]

Find B=[m, b]" that minimizes E

X'XB=X'Y [Eq.7]
Normal equation

dE

B=(X"X)'X"Y

T T _
d—B=—2X Y+2X XB=0 [Eq. 5]

[Eq. 6]
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Line Fitting: Least Square Method

E = 2; (y; —mx;, _b)2

B=(X"X)'X"Y
[Eq. 6]

Limitations

 Fails completely for vertical lines
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Line Fitting for the General Equation of a Line

E=Y" (ax,+by,—d)’

Ah=0 a9

data model parameters
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Line Fitting for the General Equation of a Line

Ah=0 Aisrank deficient

Minimize || Ah|| subjectto| |h|=1 |

To avoid trivial solution # = 0, we need a constraint for /1
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Line Fitting for the General Equation of a Line

Optimization problem: Minimize| Ah| subjectto | h|=1

Solve h using Singular Value Decomposition (SVD):

nxXn—nX

where U, and V3, ; are orthogonal matrices (Vv = Ly and V = [cq, 0y, c3]),

diag{A, 1,1
D:["‘g{gz 3}] and |A;| > | A,| > | A5].

SVD is an extension of Eigenvalue decomposition (only works for
square matrices A,,.,) to general matrices A, .. -
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Line Fitting for the General Equation of a Line

Optimization problem: Minimize| Ah| subjectto |hl=1

Solve h using Singular Value Decomposition (SVD): A,z = UyiDysis Vs

ci
Given V3T><3 = c2T (note{c;} forms an orthogonal basis),
c3
then i = a,c; + a,c, + o35 (note ai +a; +ai =1 since| | h|| = 1)
. T 1 diag{iAay, Ay, A305)
S Ah = UanDnX3V3><3h3><1 =U an3 K| =U

nxn nxn
a3 0
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Line Fitting for the General Equation of a Line

Optimization problem: Minimize| Ah|| subjectto | h|=1

Solve h using Singular Value Decomposition (SVD): A,z = UDusaVasa

diag{la, A A
Ah = U,uDiaVaahaxs = UpiaDixa | 22| = Upx [ st b o)
as O
diag{lay, A0y, A0z} ’
la a1, AyQn, ArX
- ||AR|? = [ g1 102 2> A3U3 =(/11a1)2+(/12a2)2+(/13a3)2

(Orthogonal matrix U doesn’t affect the norm)
Note a’+a;+ai=1and |4|> || > 4], . |AR|*> 23
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Summary: Line Fitting for the General Equation of a Line

a
E=2j=l(ax,.+by,.—d)2 A= [xy.1| h=|b
d

Optimization problem: Minimize|Ah|| subjectto | h|=1
Analytical solution of h using SVD: A3 = U,,D,x3 V33

where U, , and V5, s are orthogonal matrices Vv = Ly and V = [cy, ¢y, ¢3]),

D= [diag“g%}] and || > [ 1] > 1451,

Final solution: ‘ h = c3 (last column of V') ‘
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Robust to small noises. Sensitive to outliers.
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RANSAC: dom mple onsensus

o Idea: we need to find a line that has the largest supporters (or
inliers)

Fischler & Bolles in ‘81.

19



RANSAC Line Fitting

e Task: Estimate the best line
— How many points do we need to egtimate the line?
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RANSAC Line Fitting

e Task: Estimate the best line

Fit a line to them
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RANSAC Line Fitting

e Task: Estimate the best line

Total number of points
within a threshold of
line.

22



RANSAC Line Fitting

e Task: Estimate the best line
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Slide credit: Jinxiang Chai
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RANSAC Line Fitting

e Task: Estimate the best line

Repeat, until we get a good
result.
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RANSAC Line Fitting

e Task: Estimate the best line

" “11 inlier points”

Repeat, until we get a good
result.
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RANSAC Line Fitting

RANSAC loop:

1. Randomly select a seed group of points on which to base
transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-compute
least-squares estimate of transformation on all of the
inliers

e Keep the transformation with the largest number of
inliers

This is a sequential version, you should implement a parallel version.
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RANSAC: How Many Samples?

* How many samples are needed?
— Suppose w is fraction of inliers (points from line).
— n points needed to define hypothesis (2 for lines)
— k samples chosen.

* Prob. that a single sample of n points is correct: w"

* Prob. that all k samples fail is: (1-w")"

= Choose the minimal n for solving a hypothesis

= Choose k high enough to keep the prob. below a desired failure rate
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After RANSAC

e RANSAC divides data into inliers and outliers and
yields estimate computed from minimal set of inliers.

* Improve this initial estimate with estimation over all
inliers (e.g. with standard least-squares
minimization).

e But this may change inliers, so alternate fitting with
re-classification as inlier/outlier.
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RANSAC: Pro and Con

* Pros:

— General method suited for a wide range of model fitting
problems

— Easy to implement and easy to calculate its failure rate

* Cons:

— Only handles a moderate percentage of outliers without
cost blowing up

— Many real problems have high rate of outliers (but
sometimes selective choice of random subsets can help)
* A voting strategy, The Hough transform, can handle
high percentage of outliers
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From the Perspective of Voting

Given points in the vector space,
find (m,n) in the parameter space

Read by Yourself

RANSAC

Define a inlier threshold
distance in the vector space,
each point votes for the best

hypothesis.
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Hough Transform

Original space Hough space

Given points in the vector space, The intersection in the

find (m,n) in the parameter space parameter space is (m, n)
Read by Yourself
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Hough Transform w/o Noise
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Ground truth: y=-0.4106 x + 0.0612
Fitted result: y =-0.412 x + 0.060



Hough Transform w/ Noise and Outliers
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From the Perspective of Voting

RANSAC Hough transform

yi=mx +n

Voting in the

o Voting in the
original space

parameter space

Read by Yourself




Robust Fitting: RANSAC vs. Hough Transform

RANSAC

* Single mode: robust for
outliers

Hough Transform

e Less robust compared to
RANSAC (spurious peak)

« Can handle multiple modes well

Read by Yourself

orginal image




Summary of Line Detection

« A modular based approach: gradient -> edge -> line

* Need high robustness for every module, e.g., denoising in gradient image,
robust line fitting
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Corner Detection



Keypoint Localization

* In addition to edges, keypoints are also important to detect.
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Applications

Separately detect keypoints and then find matching.
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What Points are Keypoints?

* Saliency: interesting points

©
g §”
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More Requirements

* Saliency: interesting points

» Repeatability: detect the same point independently in both
images

’-,;i' o ;:.'.
A 0a
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/A Tl NS/ -

No chance to match!
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More Requirements

* Repeatability: detect the same point independently in both
images

* Saliency: interesting points
 Accurate localization
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More Requirements

* Repeatability: detect the same point independently in both
images

* Saliency: interesting points
 Accurate localization
« Quantity: sufficient number

No chance to match!
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Repeatability and Invariance

 For a keypoint detector to be lllumination
repeatable, it has to be invariant to: invariance
* [llumination
* Image scale
» Viewpoint oo
Invariance
%

%
: “

" v, Pose invariance
&a > *Rotation
L *Affine
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Corners as Keypoints

« Corners are such kind of keypoints, because they are
 Salient;
» Repeatable (one corner would still be a corner from another viewpoint);
o Sufficient (usually an image comes with a lot of corners);
 Easy to localize.
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The Properties of a Corner

* The key property of a corner: In the region around a
corner, image gradient has two or more dominant
directions
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The Basic Idea of Harris Corner

* Move a window and explore intensity changes within the window

A
) ‘ 4
<
y -

x)
¥
¥

Flat region: no Edge: no change Corner:
change in all along the edge significant
directions direction change in all

directions
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The Basic Idea of Harris Corner

Original image
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The Basic Idea of Harris Corner

Local neighborhood of
a corner point (x0, yO0)
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The Basic Idea of Harris Corner

(x0+u, yOwv)

Move the window by
(U, v)
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The Basic Idea of Harris Corner

-

Local neighborhood of Local neighborhood of
a corner point (x0, yO0) point (x0+u, y0+v)
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The Basic Idea of Harris Corner

After moving (u, v), the squared difference
within the window

EXO’YO(M’ V)= j D J |
2

= ) Ux+uy+v)—Ix )P
(x,y)EN

Where N is the neighborhood of (x0, y0)
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Square intensity difference

Du,v(x’ y) — [I(.X + u,y + V) — I(X, y)]2

Rectangle Window Function

. {1, if —b<x,y<b
— L o 0, else.

1 1in window, 0 outside (b: half-width of the WindOW)

Rectangle window function

w, X, = WX —X,,V —
when the center is at (xy, V) XO’yO( y) ( 0¥ = o)
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The Basic Idea of Harris Corner Detector

EXO»YO(M’ V)= j o J |
2

= Z (x4 u,y +v) — I(x,y)]?
(x,y)EN

= Y Wl @G+ 1y + ) = )P = Y wl (63)D,,(x.y)
X,y LY

— ZW('X_Xan _y())Du,v(-x’y) = ZW(XO — X% )0 _y)Du,v(x’y)
X,y X,y

— ’ %k
=Y Du,v
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Harris Detector

Since u and v are both small, we apply first-order Taylor expansion:

IIx+u,y+v]—=Ixy]l~ Ixu+1yv

I)% ley u
oD, y) = (x4 u,y +v] = 11x,y1)* & (Lu + Ly)* = [u,v] 11 2 [ ]
X7y Y

I? 11
xoy(u V)_W*D [uaV]W*|:x xy:| [\If]

LI, I}
‘I_\
6./

Image /

A function of X, ¥,
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Harris Detector

If we are checking the corner at (x,, yy), then the energy after moving
the window by (u, v) is:

E(X(),YQ)(M’ V) ~ [M, V] M(x()9 y()) [z]

;LI [wER wrdl)
2 2
LI | |wHdl) w*I

where  M(x,y) =w*

56



Harris Detector

;LI [wER wrdl)

2 2
LI 2| |wEd L) wE

M(x,y) =w*

* M is a symmetric matrix.
* M is a positive semi-definite matrix
. o A 0
- Simple case: M(x,, ) : is diagonal  M(xy,y,) = 0 .| =0 20
2

o E(xo,yo)(u, V) ~ [l/t, V] M(x()a y()) [‘Lﬁ] — j“1“2 + /12‘/’2

* This corresponds to an axis-aligned corner.
e If either A = 0, this is not a corner.

57



Harris Detector

 General case:

since M is a symmetric square matrix, perform eigenvalue-
decomposition:

wEIZ wE (L))

A O
M(x,y) = =Q[1 ]QT (h 20, 42 0)
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Harris Detector

* General case: since M is a symmetric matrix, perform eigen-
decomposition:

WwEIZ wE (L))

— r (4, >0, 1, >0)
(L) wrIE Q[O AJQ o

M(x09 yO) —

Direction of the

. ~ /2 r2 !
.o E(Xo,yO)(u’ V) ~ /111/1 + AZV where [‘Lj/] =0 [I‘/j]
fastest change

Direction of the
slowest change

The energy landscape is a paraboloid!
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« Classification of the type of the image point according to the
eigenvalues of M.

A,
Two conditions must be satisfied:

A Ay > b

1 A
—<—<k
kA,

A;and A, are small;

E is almost constant in :> “Flat”
all directions region

)’1 . A‘Z
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Corner Response Function @

* Fast approximation: Asdy > b & A4, — 21> 0and t = b*/2

1 1
0 = 5(/11/12 —2a(A; + A + E(MZ — 2f)

1 A i ,
— <L <k W= 2al + 4 > 0and a =172k + 1/k)

A

If k ~ 3, then a ~ 0.045 g
= Ay —a(dy + A,)* —t
= det(M) — aTr(M)* —t

Orthogonal transformation won’t change
the determinant and trace of a matrix
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Choices of Window Functions

Rectangle “hard” window Isotropic “soft” window
LAl | g or
1 in window, O outside Gaussian
w is not rotation-invariant. 8, is rotation-invariant.

wEI; wHELL

w* I w* I

g *IF g, * LI,

Mo o) = 8 >X<]xly 8 *Iyz

M(x()a y()) —
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Using Gaussian Filter

8, I g, * L] [eUD) g 1)
& H L g, * I |8 L) g

Gaussian

" 0(xg, o) = det(M(x, o)) — aTr(M(x, yo))2 — 1

= (gUDgU) = [gU L)) — algU?) + gUD]* — 1
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The Whole Process of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter .
{ ) l '
(11 <g(h?)

4. Corner response function
0 = gUDgU?) — [gU 1)) — algUD) + gUDT* — 1
5. Thresholding to obtain a binary mask 0(x,, y,) > 0

6. Non-maximum suppression
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Introduction to Computer Vision

Next week: Lecture 4,
Deep Learning |

Embodied Perception and InteraCtion'lEat



