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Introduction to Computer Vision

Lecture 2 - Classic Vision I



• Compared to human vision, computer vision deals with the following tasks:
• visual data acquisition (similar to human eyes but comes with many more 

choices)
• signal processing and feature extraction (mostly low-level)
• analyze local structures and then 3D reconstruct the original scene (mid-

level)
• understanding (mostly high-level)
• generation
• vision-language tasks
• and further enabling embodied agents to take actions.
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Recap: Overview of Computer Vision



The Early History of
Computer Vision
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The Birth of Artificial Intelligence

The Dartmouth Conference

August 1956. From left to right: Oliver Selfridge, Nathaniel 
Rochester, Ray Solomonoff, Marvin Minsky, Trenchard More, 

John McCarthy, Claude Shannon.

Alan Turing and Turing test

1950, Turing wrote the article “Computing machinery and 
intelligence”, in which he described what would become 
known as the “Turing Test”.

https://en.wikipedia.org/wiki/Turing_test


• A visual perception component of an 
ambitious agenda to mimic human 
intelligence.

• AI pioneers believed that solving the 
“visual input” problem would be 
easier than solving higher-level 
reasoning and planning. 

• Marvin Minsky at MIT asked his 
undergrad Gerald Jay Sussman to 
“spend the summer linking a camera 
to a computer and getting the 
computer to describe what it saw”. 
However, we know this is not that 
easy.
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Early in 1960s: CV as a Summer Project
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Early in 1960s: Interpretation of Synthetic Objects

Borrowed from Stanford CS231N Lecture 01.

Ph.D. thesis "Machine Perception of Three-Dimensional Solids"
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1970s/1980s: reconstruction as the first step

• What distinguished computer 
vision from the already 
existing field of digital image 
processing:

• the desire to recover the 
three-dimensional 
structure of the world from 
images

• And use this as a stepping 
stone to- wards full scene 
understanding 

Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.



• Extracting edges and then 
inferring the 3D structure of an 
object or a “blocks world” from 
the topological structure of the 
2D lines 
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Basic Ideas

Line labeling (Nalwa 1993)

Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.
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Three-dimensional Modeling of Non-polyhedral Objects 

Borrowed from Stanford CS231N Lecture 01.
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David Marr’s 2.5-D Sketch

Palmer, Stephen E. Vision science: Photons to phenomenology. MIT press, 1999.
Stanford CS 231N Lecture 01.

• 2.5-D Sketch: 

• A surface based representation 
that bridges 2D and 3D

• Depth-from-X: computed from a 
2-D image-based representation 
(primal sketch) via extracting 
information about 

• surface orientation 
• depth from a variety of 

sources, such as shading, 
stereo, and motion.
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3D Reconstruction

Structure from Motion
(Tomasi and Kanade 1992 )

Dense stereo matching 
(Boykov, Veksler, and Zabih 
2001) 

Multi-view reconstruction 
(Seitz and Dyer 1999) 

Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.
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Recognition and Segmentation

D. Lowe. IJCV, 1992 Normalized Cut (Shi & Malik, 1997)



Histogram of Gradients (HoG) Dalal & Triggs, 2005 
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Descriptors

Credit: https://iq.opengenus.org/object-detection-with-histogram-of-oriented-gradients-hog/
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Detection

Face Detection, Viola & Jones, 2001
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CV from the Classic Era to the Deep Learning Era 

• Previous works don’t leverage learning.

• However, many techniques and concepts proposed by them are still foundations 
for modern computer vision.

• Current trend:
• From non-learning based method to learning-based method

• Rely on big data

• Requires more computation resources.
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Algorithm: Deep Learning

2018 Turing Awards: Geoffrey Hinton, Yann LeCun, and Yoshua Bengio
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Data: ImageNet and Its Benchmark
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Computational Resources: GPU

NVIDIA and its GPU Google and its TPU
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Today’s Topic

• Low-level vision
• Image processing
• Edge/corner detection
• Feature extraction

• Mid-level vision
• Grouping
• Inferring scene geometry (3D reconstruction)
• Inferring camera and object motion

• High-level vision
• Object recognition
• Scene understanding
• Activity understanding
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Outline of Today’s Lecture

• Images as functions

• Classic (non-learning) methods
• Edge detectors
• Corner detectors
• Line fitting

Adaptive non-maximal suppression (ANMS) (Brown, Szeliski, and Winder 2005) 

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023



Images as Functions

21
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Images as Functions

Slide borrowed from Stanford CS131
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Images as Functions

Slide borrowed from Stanford CS131
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Images as Functions

Slide borrowed from Stanford CS131
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Images as Functions

Slide borrowed from Stanford CS131



• Image as a function:
• Image gradient:

• In practice, use finite difference to replace gradient.
• !"
!#
|#$#! ≈

"(#!&',)!)+"(#!+',)!)
,

• The image gradient points in the direction of the most rapid change in 
intensity. 
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Image Gradient

𝑓 = 𝑓(𝑥, 𝑦)

Image borrowed from Stanford CS131



27

Visualizing Image Gradient

Gradient magnitude: Source: Feifei Li
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Filters

Slide borrowed from Stanford CS131
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1D Discrete-Space Systems (Filters)

𝑓[𝑛] → → ℎ[𝑛]System 𝒢

ℎ = 𝒢(𝑓), ℎ[𝑛] = 𝒢(𝑓)[𝑛]
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1D Filter Example: Moving Average

After moving average with window size = 5,
ℎ[𝑛]Original data 𝑓[𝑛]
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1D Filter Example: Moving Average

Original data 𝑓[𝑛] After moving average, 
ℎ[𝑛]

Weight function
(equal weight) 

Let’s use the language of image or signal processing!
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1D Discrete Convolution (∗)

Filter 𝑔[𝑛]

* =

We can express this moving averaging using convolution!

Original data 𝑓[𝑛] After moving average, 
ℎ[𝑛]

ℎ[𝑛] =



Discrete signal

33

Quick Facts of Convolution

ℱ(𝑓 ∗ 𝑔) = ℱ(𝑓)ℱ(𝑔)

Continuous signal

(𝑓 ∗ 𝑔)(𝑥) = ∫-$+.
. 𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡

• Derivative Theorem

• Convolution Theorem 

ℱ(𝑓) = ∫!"#$
$ 𝑓(𝑡)exp(−𝑖2𝜋𝜔𝑡)𝑑𝑡ℱ(𝑓)[𝑛] = ∑

!"#

$%&
𝑓[𝑚]exp(−

𝑖2𝜋
𝑀

𝑚𝑛𝑡)

Convolution

Fourier Transform

∴ ℎ = ℱ#$ ℱ(𝑓)ℱ(𝑔)
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Discrete Convolution: *

* =

Our filter is indeed a rectangular function. What is its Fourier transform? 

Filter 𝑔[𝑛]Original data 𝑓[𝑛] After moving average, 
ℎ[𝑛]
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Rectangular Function and its Fourier Transform

𝑔(𝑛)

ℱ(𝑔)[𝑚]

ℱ(𝑔)[𝑚]mainly concentrates 
around 0
⇒ 𝑔 is a low-pass filter.

For more information about this discrete Fourier transform, please see 
https://flylib.com/books/en/2.729.1/the_dft_of_rectangular_functions.html

https://flylib.com/books/en/2.729.1/the_dft_of_rectangular_functions.html
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From a Low-Pass Filter Perspective

ℱ(𝑔)[𝑚]

ℱ(𝑔)[𝑚]mainly concentrates 
around 0
⇒ 𝑔 is a low-pass filter.

According to Convolution theorem, ℱ(𝑓 ∗ 𝑔) =
ℱ(𝑓)ℱ(𝑔)
ℱ(𝑓)ℱ(𝑔)means the high frequency part of 
ℱ(𝑓) turns to 0 in ℱ(𝑓 ∗ 𝑔).

When you removes high frequency parts in the 
signal, the signal becomes smooth. That’s how 
Fourier transform explains the smoothing effect by 
moving average.

https://en.wikipedia.org/wiki/Filter_(signal_processing)
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Linear System ↔ Linear Filters ↔ Convolution

𝑓[𝑛] → → ℎ[𝑛]System 𝒢

ℎ = 𝒢(𝑓), ℎ[𝑛] = 𝒢(𝑓)[𝑛]

• Linear filtering 𝒢:
•ℎ[𝑛] is a linear combination of values from 𝑓[𝑛]
• The weight of this linear combination is the same at each point 𝑛

• Then 𝒢 is a linear system (function) iff 𝒢 satisfies
𝒢(𝛼𝑓$ + 𝛽𝑓%) = 𝛼𝒢(𝑓$) + 𝛽𝒢(𝑓%)

• It can be proved that linear filters can also be expressed using convolutions.
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2D Discrete-Space Systems (Filters)

𝑓[𝑛,𝑚] → → ℎ[𝑛,𝑚]System 𝒢

ℎ = 𝒢(𝑓), ℎ[𝑛,𝑚] = 𝒢(𝑓)[𝑛,𝑚]
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2D Discrete Filter Example: Moving Average

𝑔 =

ℎ[𝑚, 𝑛]

=

Image borrowed from Stanford CS131
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2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131
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2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131
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2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131
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2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131
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2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131
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2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131
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Summary of Moving Average

Slide borrowed from Stanford CS131
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Non-linear Filtering Example: Binarization via Thresholding

Define a threshold 𝜏, e.g., 𝜏 = 100.

ℎ[𝑚, 𝑛] 𝜏

Image borrowed from Stanford CS131



Edge Detection
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Start with A Task: Lane Detection

How to detect the lane?

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023



• Edge detector
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Start with Detecting Edges

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03



• An edge is defined as a region in the image where there is a “significant” 
change in the pixel intensity values (or having high contrast) along one 
direction in the image, and almost no changes in the pixel intensity values 
(or low contrast) along its orthogonal direction.
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What is an Edge?

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03



• High precision: make sure all detected edges are true edges (via minimizing FP).
• High recall: make sure all edges can be detected (via minimizing FN).
• Good localization: minimize the distance between the detected edge and the ground truth 

edge
• Single response constraint: minimize redundant responses
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Criteria for Optimal Edge Detection

Image borrowed from Stanford CS231A Lecture 10

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

TP: true positives,  FP: false positives
TN: true negatives, FN:false negativesLow precision



56

What Causes An Edge?

• Depth 
discontinuity     

• Surface color                         
discontinuity        

• Surface 
orientation  
discontinuity     

• Illumination
discontinuity        

Image borrowed from Stanford CS231A Lecture 10



• An edge is defined as a region in the image where there is a “significant” 
change in the pixel intensity values along one direction in the image, and 
almost no changes in the pixel intensity values along its orthogonal 
direction.
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Characterizing Edges

Image borrowed from Stanford CS231A Lecture 10
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Visualizing Image Gradient

Gradient magnitude: 
Source: Feifei Li



• Gradient is non-zero everywhere. Where is the edges?
59

Problem



• Consider one row in the image
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Effects of Noises

Source: Steven Seitz

• Image gradients are too 
sensitive to noise.

• Gradients of the true edge is 
overwhelmed by noises.

• We need smoothing!
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Smoothing by Gaussian Filter

𝑔 =
1
2𝜋𝜎6

exp −
𝑥6

2𝜎6 ℱ(𝑔) = exp(−
𝜎6𝜔6

2
)

• The bigger 𝜎 is, the sharper ℱ(𝑔) is. When 𝜎 → +∞,
filter all high-frequence parts and then the signal 
becomes a constant. 

• The smaller 𝜎 is, the boarder ℱ(𝑔) is. When 𝜎 → 0,
ℱ(𝑔) = 1, no filtering at all.

• Gaussian transforms to another Gaussian, 
• low-pass filter!
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Smoothing by a Low-Pass Filter

Source: Steven Seitz



• Theorem:

• Saves us one operation.
63

Derivative Theorem of Convolution
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Two-Dimensional Convolution

𝑓 𝑔 =
1

2𝜋𝜎! exp −
𝑥! + 𝑦!

2𝜎!

(𝑓 ∗ 𝑔)[𝑚, 𝑛] = ∑
"#$%

%
∑

&#$%

%
𝑓[𝑘, 𝑙]𝑔[𝑚 − 𝑘, 𝑛 − 𝑙]

*

Source: Feifei Li
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Derivative of 2D Gaussian Filter

=

Source: Feifei Li
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Compute Gradient

x-derivative of Gaussian y-derivative of Gaussian

Gradient magnitude Thresholding and Gradient orientation
Source: Feifei Li
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Non-Maximal Suppression (NMS)

• For each point 𝑞 on grids, compute the gradient 
𝑔(𝑞).
• Move along the gradient to get two neighbors:           
𝑟 = 𝑞 + 𝑔(𝑞), 𝑝 = 𝑞 − 𝑔(𝑞)
• Perform bilinear interpolation to get 𝑔(𝑝) and 
𝑔(𝑟).
• If the magnitude of g(q) is larger than 𝑔(𝑝) and 
𝑔(𝑟), 𝑞 is a maximum that should be kept.

Source: J. Hayes
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Bilinear Interpolation

For 𝑃(𝑥, 𝑦), given its four surrounding grid points
𝑓(𝑄$$), 𝑓(𝑄$%), 𝑓(𝑄%$) and 𝑓(𝑄%%),
how to obtain 𝑓(𝑃) via bilinear interpolation?

First, linear interpolate to obtain 𝑓(𝑅$) and 𝑓(𝑅%)

𝑅7:

𝑅6:
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Bilinear Interpolation

For 𝑃(𝑥, 𝑦), given its four surrounding grid points
𝑓(𝑄$$), 𝑓(𝑄$%), 𝑓(𝑄%$) and 𝑓(𝑄%%),
how to obtain 𝑓(𝑃) via bilinear interpolation?

First, linear interpolate to obtain 𝑓(𝑅$) and 𝑓(𝑅%)

𝑅7:

𝑅6:

Then, linear interpolate between 𝑓(𝑅$) and 𝑓(𝑅%) to obtain 𝑓(𝑃):

𝑃:



A Simplified Version of NMS

The orientation of each pixel is put into one of the four 
bins.

Example: gradient orientation from 22.5 to 67.5 degrees

To check if the central red pixel belongs to an 
edge, you need to check if the gradient is 
maximum at this point. You do this by 
comparing its magnitude with the top left pixel 
and the bottom right pixel.
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Before and After NMS

Thin multi-pixel wide “ridges” down to single pixel width

Source: J. Hayes



• Use a high threshold (maxVal) to start edge curves and a low threshold 
(minVal)  to continue them. 

• Pixels with gradient magnitudes >maxVal should be reserved

• Pixels with gradient magnitudes <minVal should be removed.

• How to decide maxVal and minVal? Examples: 

• maxVal = 0.3 × average magnitude of the pixels that pass NMS

• minVal = 0.1 × average magnitude of the pixels that pass NMS
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Hysteresis Thresholding

Source: J. Hayes



Edge Linking

• Now using the direction information and the lower threshold, we'll "grow" 
these edges. 
• If the current pixel is not an edge, check the next one.
• If it is an edge, check the two pixels in the direction of the edge (ie, 

perpendicular to the gradient direction). If either of them (or both)

• Drop-outs? 



Edge Linking

• Now using the direction information and the lower threshold, we'll "grow" 
these edges. 
• If the current pixel is not an edge, check the next one.
• If it is an edge, check the two pixels in the direction of the edge (ie, 

perpendicular to the gradient direction). If either of them (or both)
• have the direction in the same bin as the central pixel
• gradient magnitude is greater than minVal
• they are the maximum compared to their neighbors (NMS for these pixels), 

then you can mark these pixels as an edge pixel

• Drop-outs? 



Edge Linking

• Now using the direction information and the lower threshold, we'll "grow" 
these edges. 
• If the current pixel is not an edge, check the next one.
• If it is an edge, check the two pixels in the direction of the edge (ie, 

perpendicular to the gradient direction). If either of them (or both)
• have the direction in the same bin as the central pixel
• gradient magnitude is greater than minVal
• they are the maximum compared to their neighbors (NMS for these pixels), 

then you can mark these pixels as an edge pixel
• Loop until there are no changes in the image Once the image stops changing, 

you've got your canny edges! That's it! You're done!

• Drop-outs? 
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Canny Edge Detector

JJ. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 
1986.

• The most widely used edge detector in computer vision
• Canny shows that the first derivative of the Gaussian closely 

approximates the operator that optimizes the product of signal-to-
noise ratio and localization.



• Note a larger 𝜎 corresponds to stronger smoothing.
• Smoothed derivative reduces noises but blurs edges.
• Find edges at different scales.
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Tradeoff between Smoothing and Localization

Image credit: J. Hayes
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Summary of Edge Detection

• What is an edge?
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Summary of Edge Detection

• Edge: where pixel intensity changes drastically
• Compute image gradient to find edge, however noises can be 

overwhelming and fail the detection
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Summary of Canny Edge Detection

• Edge: where pixel intensity changes drastically
• Jointly detecting edge and smoothing by convolving with the 

derivative of a Gaussian filter
• Non-maximal suppression
• Thresholding and linking (hysteresis):



Keypoint Detection

Some slides are borrowed from Stanford CS131.
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• In addition to edges, keypoints are also important to detect.
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Keypoint Localization
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Applications: Image Matching

Separately detect keypoints and then find matching.

Slide borrowed from Stanford CS131



• Saliency: interesting points
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What Points are Keypoints?

Image borrowed from Stanford CS131



• Saliency: interesting points
• Repeatability: detect the same point independently in both images
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More Requirements

Image borrowed from Stanford CS131



• Repeatability: detect the same point independently in both images
• Saliency: interesting points
• Accurate localization

86

More Requirements

Image borrowed from Stanford CS131



• Repeatability: detect the same point independently in both images
• Saliency: interesting points
• Accurate localization
• Quantity: sufficient number

87

More Requirements

Image borrowed from Stanford CS131
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Repeatability and Invariance

• For a keypoint detector to be repeatable, 
it has to be invariant to:
• Illumination
• Image scale
• Viewpoint

Image borrowed from Stanford CS131



• Corners are such kind of keypoints, because they are
• Salient;
• Repeatable (one corner would still be a corner from another viewpoint);
• Sufficient (usually an image comes with a lot of corners);
• Easy to localize.
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Corners as Keypoints

Image borrowed from Stanford CS131



• The key property of a corner: In the region around a corner, 
image gradient has two or more dominant directions
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The Properties of a Corner

Image borrowed from Stanford CS131



• Move a window and explore intensity changes within the window 
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The Basic Idea of Harris Corner

Flat region: no 
change in all 
directions

Edge: no change 
along the edge 
direction

Corner: significant 
change in all 
directions

Image borrowed from Stanford CS131
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The Basic Idea of Harris Corner

Original image
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The Basic Idea of Harris Corner

(x0, y0)
Local neighborhood of a 
corner point (x0, y0)
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The Basic Idea of Harris Corner

(x0, y0)

(x0+u, y0+v)

Move along direction 
(u, v)
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The Basic Idea of Harris Corner

Local neighborhood of a 
corner point (x0, y0)

Local neighborhood of 
point (x0+u, y0+v)
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The Basic Idea of Harris Corner

—| |
2

Change along direction (u, v) = 

= ∑
(',))∈,

[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]%

Where N is the neighborhood of (x0, y0)
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Notation

𝑤-(𝑥, 𝑦) = 𝑤(𝑥 − 𝑥., 𝑦 − 𝑦.)

Rectangle Window Function

𝐷(𝑥, 𝑦) = [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]%

Square intensity difference
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—| |
2

= ∑
(",$)∈'

[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)](

The Basic Idea of Harris Corner

= ∑
',)
𝑤-(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]%

𝑤8(𝑥, 𝑦) = 𝑤(𝑥 − 𝑥9, 𝑦 − 𝑦9)

Rectangle Window Function

𝐷(𝑥, 𝑦) = [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]!

Square intensity difference= ∑
",$
𝑤)(𝑥, 𝑦)𝐷(𝑥, 𝑦)

= 𝑤) ∗ 𝐷



 X

Harris Detector

I[x + u, y + v] − I[x, y] ≈ Ixu + Iyv

∴ D(x, y) = (I[x + u, y + v] − I[x, y])2 ≈ (Ixu + Iyv)2

First-order Taylor expansion:

= [u, v][
I2
x IxIy

IxIy I2
y ] [u

v]

∴ E(x0,y0)(u, v) = w′ * D = [u, v] w′ * [
I2
x IxIy

IxIy I2
y ] [u

v]

Image borrowed from Stanford CS131



 X

Harris Detector

E(x0,y0)(u, v) ≈ [u, v] M(x0, y0) [u
v]

where M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y ] = [

w′ * I2
x w′ * (IxIy)

w′ * (IxIy) w′ * I2
y ]

If we are checking the corner at  , then the change along direction 
(u0, v0) is:

(x0, y0)

Image borrowed from Stanford CS131



• M is a symmetric matrix. 
• M is a positive semi-definite matrix. 

• Simple case: M is diagonal at  (x0, y0) :

 X

Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)

∴ E(x0,y0)(u, v) ≈ [u, v] M(x0, y0)[u
v] = λ1u2 + λ2v2

• This corresponds to an axis-aligned corner. 

• If either  , this is not a corner.λ ≈ 0

M(x0, y0) = [λ1 0
0 λ2]

(since all its principle minors  .)≥ 0

Image borrowed from Stanford CS131

M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y ] = [

w′ * I2
x w′ * (IxIy)

w′ * (IxIy) w′ * I2
y ]



• General case:  
   since M is a symmetric matrix, perform eigendecomposition:

 X

Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y ] =

R is an orthogonal matrix,  s are the eigenvalues of M!λ



• General case: since M is a symmetric matrix, perform eigen-
decomposition:

 X

Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y ] =

∴ E(x0,y0)(u, v) ≈ λ1u2
R + λ2v2

R [uR
vR] = R [u

v]where

The energy landscape is a paraboloid!

Image borrowed from Stanford CS131



• Classification of the type of the image point according to the 
eigenvalues of M.
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Eigenvalues

Image borrowed from Stanford CS131

𝜆$, 𝜆% > 𝑏

1
𝑘
<
𝜆!
𝜆"
< 𝑘

Two conditions must be satisfied:



• Fast approximation:
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Corner Response Function 𝜃

𝛼in[0.04,0.06]𝜃 =
1
2
(𝜆$𝜆% − 𝛼(𝜆$ + 𝜆%)%) +

1
2
(𝜆$𝜆% − 2𝑡)

= 𝜆$𝜆% − 𝛼(𝜆$ + 𝜆%)% − 𝑡

1
𝑘
<
𝜆7
𝜆6
< 𝑘 𝜆$, 𝜆% > 𝑏

= 𝑑𝑒𝑡(𝑀) − 𝛼𝑇𝑟𝑎𝑐𝑒(𝑀)% − 𝑡
Orthogonal transformation won’t change the 
determinant and trace of a matrix 



 X

Choices of Window Functions

Not rotation-invariant. Rotation-invariant.

M(x, y) = w * [
I2
x IxIy

IxIy I2
y ] M(x, y) = g(σ) * [

I2
x IxIy

IxIy I2
y ]

or

Rectangle window
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Summary of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function

5. Non-maximum suppression

𝜃 = 𝑔(𝐼>6)𝑔(𝐼?6) − [𝑔(𝐼>𝐼?)]6 − 𝛼[𝑔(𝐼>6) + 𝑔(𝐼?6)]6 − 𝑡



• Input: two images
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Compute corner response 𝜃
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Thresholding and perform non-maximal suppression
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Results
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Step-by-Step Harris Detector

Image borrowed from Stanford CS131



• Corner response is equivariant with both translation and image 
rotation.
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Properties of Harris Detector

Image borrowed from Stanford CS131



• Corner response is equivariant with both translation and image 
rotation.
• Not invariant to scale.
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Properties of Harris Detector

Image borrowed from Stanford CS131
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Scale Invariant Detectors

Slides borrowed from Stanford CS131



Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 3, 
Classic  Vision Methods II

Introduction to Computer Vision


