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Recap: Overview of Computer Vision

* Compared to human vision, computer vision deals with the following tasks:

e visual data acquisition (similar to human eyes but comes with many more
choices)

* signal processing and feature extraction (mostly low-level)

 analyze local structures and then 3D reconstruct the original scene (mid-
level)

e understanding (mostly high-level)

* generation

* vision-language tasks

* and further enabling embodied agents to take actions.



The Early History of
Computer Vision



The Birth of Artificial Intelligence

Alan Turing and Turing test The Dartmouth Conference
1950, Turing wrote the article “Computing machinery and August 1956. From left to right: Oliver Selfridge, Nathaniel
intelligence”, in which he described what would become Rochester, Ray Solomonoff, Marvin Minsky, Trenchard More,

known as the “Turinqg Test”. John McCarthy, Claude Shannon.


https://en.wikipedia.org/wiki/Turing_test

Early in 1960s: CV as a Summer Project

* A visual perception component of an
ambitious agenda to mimic human
intelligence.

Al pioneers believed that solving the
“visual input” problem would be
easier than solving higher-level
reasoning and planning.

Marvin Minsky at MIT asked his
undergrad Gerald Jay Sussman to
“spend the summer linking a camera
to a computer and getting the
computer to describe what it saw”.
However, we know this is not that
easy.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966

Vision Memo. Ho. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers
effectively in the construction of a significant part of a visual system.
The particular task was chosen part{? because it can be segmented into
sub-problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of "pattern recognition!l.



Early in 1960s: Interpretation of Synthetic Objects

Ph.D. thesis "Machine Perception of Three-Dimensional Solids"
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3 A
m Input image 2x2 gradient operator computed 3D model

rendered from new viewpoint

Larry Roerts
1963, 1%t thesis of Computer Vision



1970s/1980s: reconstruction as the first step

e What distinguished computer
vision from the already
existing field of digital image
processing:
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LOWER
ARM

IR S
" ‘ . > \—‘ HAND

o - Y

©
e the desire to recover the

three-dimensional
structure of the world from
images

e And use this as a stepping
stone to- wards full scene
understanding

(e)

Figure 1.7 Some early (1970s) examples of computer vision algorithms: (a) line labeling (Nalwa 1993) ©© 1993
Addison-Wesley, (b) pictorial structures (Fischler and Elschlager 1973) © 1973 IEEE, (c) articulated body model
(Marr 1982) (©) 1982 David Marr, (d) intrinsic images (Barrow and Tenenbaum 1981) (©) 1973 IEEE, (e) stereo
correspondence (Marr 1982) (© 1982 David Marr, (f) optical flow (Nagel and Enkelmann 1986) () 1986 IEEE.



Basic ldeas

* Extracting edges and then gt

inferring the 3D structure of an A
object or a “blocks world” from + \:
the topological structure of the )I B
2D lines \/- -

A4 k. " vt

Line labeling (Nalwa 1993)



Three-dimensional Modeling of Non-polyhedral Objects

* Generalized Cylinder » Pictorial Structure
Brooks & Binford, 1979 Fischler and Elschlager, 1973




David Marr’s 2.5-D Sketch

e 2.5.D Sketch: Input image Edge image 2 /2-D sketch 3-D model
* A surface based representation = ——
that bridges 2D and 3D 6 /@ s
* Depth-from-X: computed from a —_@—

2-D image-based representation
(primal sketch) via extracting

i ti bout Input Primal 2 %D 3-D Model
INTormation abou Image Sketch Sketch Representation
 surface orientation
_ Zero crossings, Local surface 3-D models
e depth from a variety of Dercaived »| blobs, edges, »| orientation »{ hierarchically
i SIcEIve bars, ends, and ized i
sources, such aS.Shadmg' intensities virtual lines, discontinuities or?earrr]vlmzseofm
stereo, and motion. groups, curves in depth and surface and
boundaries in surface volumetric
orientation primitives

Stages of Visual Representation, David Marr, 1970s
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3D Reconstruction

Structure from Motion Dense stereo matching Muolti-view reconstruction
(Tomasi and Kanade 1992 ) (Boykov, Veksler, and Zabih (Seitz and Dyer 1999)
2001)
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Recognition and Segmentation

D. Lowe. 1JCV, 1992 Normalized Cut (Shi & Malik, 1997)
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Detection

Face Detection, Viola & Jones, 2001
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CV from the Classic Era to the Deep Learning Era

e Previous works don’t leverage learning.

e However, many techniques and concepts proposed by them are still foundations
for modern computer vision.

e Current trend:
e From non-learning based method to learning-based method
e Rely on big data

e Requires more computation resources.

- A\\
f )
J
‘
x2 gradient operator

computed 3D model
rendered from new viewpoint

Input image
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Algorithm: Deep Learning
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2018 Turing Awards: Geoffrey Hinton, Yann LeCun, and Yoshua Bengio
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Data: ImageNet and Its Benchmark

22,000 categories
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J. Deng, W. Dong; R. Socher,.L.-]. Li, K. Li & L. Fei-Fei. CVPR, 2009.




Computational Resources: GPU

<AnvibiA : SILICON VALLEY | MARCH 18-21

, GTC19

NVIDIA and its GPU Google and its TPU
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Today’s Topic

* Low-level vision
* Image processing
* Edge/corner detection
* Feature extraction
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Outline of Today’s Lecture

* Images as functions

* Classic (non-learning) methods

* Edge detectors
* Corner detectors
* Line fitting

20



Images as Functions




Images as Functions

* An Image as a function f from R? to RM:

* f( x, y ) gives the intensity at position (x, y)
* Defined over a rectangle, with a finite range:
f-la,b] X [c,d ] = [0,255]

Domain range N R
support y

22



Images as Functions

* An Image as a function f from R? to RM:

* f( x, y ) gives the intensity at position (x, y )
* Defined over a rectangle, with a finite range:
[ lab] X [c,d] =2 [0,255]

Domain range
support

7(x,)) ]
e Acolorimage: f(x,y)=|g(x,»)

b(x,y) |
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Images as Functions

* An image contains discrete number of pixels
— A simple example
— Pixel value:

e “grayscale”
(or “intensity”): [0,255]

e “color”
— RGB: [R, G, B]

24



Images as Functions

* Images are usually digital (discrete):
— Sample the 2D space on a regular grid

e Represented as a matrix of integer values

pixel Cartesian coordinates
J &~ f
62 79 23 119 120 05 4 0 f[_l‘ 1] f[() 1] f[l!_ 1]
2 |10 10 9 62 8 34 0 | '
0 [s8  [17 46 [46 o 0 48 fln,m)=1|{ ... f[=1,0]  f[0,0]  f[1,0]
176 [135 |5 188|191 68 0 49
2 1 1 29 26 37 0 77 T f[—=1,—-1] flo,—1] f[1,—1]
0 89 144 [147 |87 102 |62 208 ‘ :
255  |252 |0 166 123 |62 0 31 Notation for i 1 .
discrete
166 |63 127 |17 1 0 99 30 :
functions
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Image Gradient

* Image as a function: f=Ffxy)
* Image gradient: __[of of
V= [858’ 8y]
I V=l - %: Vi34
vi=[03

* In practice, use finite difference to replace gradient.

. a_fl ~ S (o+1Y0)—f(X0—1,y0)

dx 'X=%Xo 2

* The image gradient points in the direction of the most rapid change in
intensity.
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Visualizing Image Gradient

Original Gradient
Image magnitude
x-direction y-direction

Gradient magnitude: IVfll = \/(%)2 + (2—5)2
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Filters

De-noising

* Filtering:

— Form a new image whose pixels are a
combination original pixel values

Goals:

-Extract useful information from the images
* Features (edges, corners, blobs...)

- Modify or enhance image properties:
e super-resolution; in-painting; de-noising

28



1D Discrete-Space Systems (Filters)

f [Tl] — |System§ N h[n]

h=6(f), hin] =G6()In]



1D Filter Example: Moving Average

After moving average with window size = 5,

Original data f [n] h[n]

6 6 ‘ .

5 ST

4 4

3 3

2 2

1 1

o 0
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1D Filter Example: Moving Average

Original data f[n] Weight function After moving average,
(equal weight) h[n]
6 6
o . . ° . i 05 5
4t _ 0.4 al
3_ 0.3 37
2f ' ] 0.1
L] [ ] 2 L
1 0 2 -1 0 1 2
1+
Oli ‘ ®
S 10 15 20 0 J
5 10 15 20

Let’s use the language of image or signal processing!
31



1D Discrete Convolution (*)

We can express this moving averaging using convolution!

Original data f [n] Filter g[n] After moving average,
h|n]
6 6 |
5 |
4 al
. * = 3
2+ ol
17 z il
0" 5 10 15 20 0“

10 15 20

Hi=—%9 32



Quick Facts of Convolution

Discrete signal Continuous signal

Convolution (Fxg)[n]= Y flmlg[n-m]  F D@ = [ f(O)9Cx—t)dt

m=—oo

Fourier Transform F()[n] = Mz_lf[m]exp(_izﬁnmnt)ﬂf(f) = ftO:_oof(t)exp(—iant)dt
m=0

[ ] [ ] d d
* Derivative Theorem L (fxo0)= fs—
dx(f g)=f dxg

* Convolution Theorem F(f*g9)=F(HF(9)
~h=F Y FF(9)

33



Discrete Convolution: *

Our filter is indeed a rectangular function. What is its Fourier transform?

Original data f [n] Filter g[n] After moving average,
h|n]
6 6 |
5 5l
4 al
. * = 3
2+ ol
17 z il
Oli ‘ [ ]
5 10 15 20 0 J
5 10 15 20

(f*g)ln]= Y, f[mlg[n-m]

m=—oo 34



Rectangular Function and its Fourier Transform

Figure 3-24. Rectangular function of width K samples defined over N samples where K < N.

gm)

< K >

is s e e nnn

—lelele-E-E-E=-0-B—-E-0-N + E_n-m-m-m-n-n—

A A o0 A AN
N2 +1 n=-=n, nN=-Ny+ (K-1) N2
A F@)Im]

104 3 " E K T .

081

| RN (g)|m] mainly concentrates
041 . . around O

024 " . . . -
B Caiihi bt 1] 7dhier ik | okt~ - i = (g is a low-pass filter.

m=-NK m=NK

For more information about this discrete Fourier transform, please see

https://flylib.com/books/en/2.729.1/the dft of rectangular functions.html 35



https://flylib.com/books/en/2.729.1/the_dft_of_rectangular_functions.html

From a Low-Pass Filter Perspective

A F(@lm]

ég '_ K T(g) [m] mainly concentrates

0.41 . around O
024

0 et b ettt tpetta e e e = g is a low-pass filter.
02+ =" A 0 A%w
m=-NK m=NK

According to Convolution theorem, F(f * g) =

‘ FUHF )

m \ / F (f)F (g) means the high frequency part of
| (Lowighpass) " T(f) turns to O in T(f * g)

)

Low-pass w

signal, the signal becomes smooth. That’s how
Fourier transform explains the smoothing effect by
moving average.

Low-ban dp

‘ l When you removes high frequency parts in the

36



Linear System <= Linear Filters <> Convolution

f [Tl] — |System§ N h[n]
h=G(f) hin] =G(f)In]

* Linear filtering G:
*h[n] is a linear combination of values from [ [n]
* The weight of this linear combination is the same at each point 1

* Then G is a linear system (function) iff § satisfies

G(afrs + Bf2) = ag(f1) + BG(f2)

e |t can be proved that linear filters can also be expressed using convolutions.
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2D Discrete-Space Systems (Filters)

f[n,m] - |SystemG | — h[n,m]

h=6(), hin,m| =G(f)In,m|



2D Discrete Filter Example: Moving Average

e 2D DS moving average over a 3 x 3 window of
neighborhood

n—+1 m-+1

h[m,n]:é Z Z flk, 1] 1| 1|1

| 1
k=n—1[l=m-—1 _
O

1 « %
=< > Y fln—km—1

k=—11=-1

= (f>x<g)[m,n]=Zf[k,l]g[m—k,n—l]
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2D Discrete Filter Example: Moving Average

(f * g)[m,n] = Zf[k,l] o[m-k,n—1]

43



2D Discrete Filter Example: Moving Average

(f*g)[m,n] = Zf[k,ll glm-k,n -]
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2D Discrete Filter Example: Moving Average

(f *g)[m,n] = Zf[k,l] g[m-k,n-1]
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2D Discrete Filter Example: Moving Average

(f*g)[m,n]= Zf[k,l] glm-k,n-1]
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2D Discrete Filter Example: Moving Average

(f *g)[m,n] = Zf[k,l] g[m-k,n-1]

47



2D Discrete Filter Example: Moving Average

(f *g)[m,n] = Zf[k,l] g[m-k,n-1]

Source: S. Seitz

48



Summary of Moving Average

e Replaces each pixel
with an average of its
neighborhood.

e Achieve smoothing
effect (remove sharp
features) T

O|

49



Non-linear Filtering Example: Binarization via Thresholding

Define a threshold T, e.g., T = 100. Is thresholding a linear system?
— fi[n,m] +f2[n,m] > T
— fl[n,m] <T
hmn] — 1, fln, m]. > T _ ffnml<r Nol
0, otherwise.

50



Edge Detection




Start with A Task: Lane Detection

How to detect the lane?

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023

52



Start with Detecting Edges

* Edge detector

53



What is an Edge?

* An edge is defined as a region in the image where there is a “significant”
change in the pixel intensity values (or having high contrast) along one
direction in the image, and almost no changes in the pixel intensity values
(or low contrast) along its orthogonal direction.

54



Criteria for Optimal Edge Detection

True Poor Too many

Low precision e
edge localization responses

oo — TP
recision = TP n FP
Recall = —F

el = b+ EN

TP: true positives, FP: false positives
TN: true negatives, FN:false negatives

 High precision: make sure all detected edges are true edges (via minimizing FP).
 High recall: make sure all edges can be detected (via minimizing FN).

* Good localization: minimize the distance between the detected edge and the ground truth

edge
* Single response constraint: minimize redundant responses

55



What Causes An Edge?

* Depth
discontinuity

* Surface
orientation
discontinuity o ,)

s "B 3

* Surface color e ‘
discontinuity

* [llumination
discontinuity CAUTION

56



Characterizing Edges

* An edge is defined as a region in the image where there is a “significant”
change in the pixel intensity values along one direction in the image, and
almost no changes in the pixel intensity values along its orthogonal
direction.

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative 57



Visualizing Image Gradient

Original Gradient
Image magnitude
x-direction y-direction

Gradient magnitude: IVfll = \/(%)2 + (2—5)2

58



Problem

Original Gradient
Image magnitude
x-direction y-direction

* Gradient is non-zero everywhere. Where is the edges?

59



Effects of Noises

* Consider one row in the image

flx)l _________ _________ _________ _________ - __________ __________ ........ _ * Image gradients are too
R . sensitive to noise.

.....................................................

I 1 I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

* Gradients of the true edge is
IRV overwhelmed by noises.

* We need smoothing!

I I I I I f i I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

60



Smoothing by Gaussian Filter

f = function of measurement g = weighting function @ Gaussian transforms to another Gaussia n,
e |ow-pass filter!

1 x4 5202
= —¢eXp —— — —
Y 2102 2072 F(g) = exp( 2 )

f convolved with g (written fxg)

e The bigger 0 is, the sharper F(g) is. When 0 — +0,
filter all high-frequence parts and then the signal
becomes a constant.

e The smaller g is, the boarder F(g) is. When g — 0,
F(g) = 1, nofiltering at all.

61



Smoothing by a Low-Pass Filter

Sigma = 50

~
Signal

oQ
Kernel

f*g

Convolution

d
E(f*g)

Differentiation

0 200 400 600 800 1400 1600 1800 2000
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Derivative Theorem of Convolution

® * i * s *i
Theorem: dx(f 9)=f -8

.................................................

~
Signal

1 | | 1 1 | 1 | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

..............................................................................................

0Q
Kernel

1 1 1 1 I I ! I 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

+*
0Q
Convolution

| 1 | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

e Saves us one operation.
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Two-Dimensional Convolution

100

50

-50

-100
-100

100

50

0.0014
0.0012

0.0010

. N 0.0008 1 xz + yz

O —
g = 5 €Xp — 2
40.0006 2 7TO- 2 G
=50 40.0004
0.0002
-100 - - L10.0000
-100 =50 0 50 100
0o 0o

f*g@lmn]= 3 X2 flkllglm—1i,n—I]

k=—ool=—00
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Derivative of 2D Gaussian Filter

015
01
* 005

| [1-1]

.““‘“}}\\ = -0.05

AR
02

2D-gaussian e, iy S G
5 SR 4 . Pl ¥ 3 ""1

x-direction y-direction
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Compute Gradient

"~- s
R Y4 \ g
» N

y-derivative of Gaussian

Gradient magnitude Thresholding and Gradient orientation
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Non-Maximal Suppression (NMS)

* For each point g on grids, compute the gradient
9(q).

* Move along the gradient to get two neighbors:
r=q+9(@.p=q9-9q)

e Perform bilinear interpolation to get g(p) and
g(r).

* If the magnitude of g(q) is larger than g(p) and
g(7), q is a maximum that should be kept.
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Bilinear Interpolation

For P(x, y), given its four surrounding grid points

f(Q11), f(Q12), f(Q21) and f (Q22),

how to obtain f (P) via bilinear interpolation?

First, linear interpolate to obtain f (R1) and f (R>)

Ry f@w) = = f(Qu) + ————f(Qu),
Lo — & r— &
R,: flz,y2) = x;_ml f(Q2) + — ;1 f(Q22).

Y2

_____ ;sz iRz ‘sz
| P

b e e rrm e e e e rr e - ‘-----------—-——-T--——

_____ ,EQH ?Rl ;.Qe%
X1 X X2
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Bilinear Interpolation

For P(x, y), given its four surrounding grid points

F(@12), F(@12), £ (Q21) and £ (Q2), d I ——

how to obtain f (P) via bilinear interpolation? y b P

First, linear interpolate to obtain f (R1) and f (R>)

. B — r — Ty |
Rl: f(m’ yl) — xz . ml f(Qll) + ;32 L ,’,Ul f(QZ].)’ yl _____ f,oll ?Rl +le_
Lo —L r — &1 . . '
R,: f(@y2)= p—— f(Q2) + p—— f(Qa2). - - o

Then, linear interpolate between f (R;) and f (R,) to obtain f (P):

Y2y Yy—un
P: f(.’L“,y) — Yo — U1 f(m’y1)+ v2 — U1 f(a:,yz)

SR ik (“’2‘“’ £(Qu) + —=1 f(Qzl))+ L (””“'2_”’ f(Qu) + —— f(sz))
Yo — Y1 \ T2 — 2y o — 1

Y2 — Y1 \Z2 — 1 o — X1
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A Simplified Version of NMS

bins.

The orientation of each pixel is put into one of the four ==.
-

Example: gradient orientation from 22.5 to 67.5 degrees

=X

To check if the central red pixel belongs to an
edge, you need to check if the gradient is
.-. maximum at this point. You do this by

BB -  comparing its magnitude with the top left pixel
v 67.5 and the bottom right pixel.




Before and After NMS

Thin multi-pixel wide “ridges” down to single pixel width
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Hysteresis Thresholding

e Use a high threshold (maxVal) to start edge curves and a low threshold
(minVal) to continue them.

* Pixels with gradient magnitudes > maxVal should be reserved
* Pixels with gradient magnitudes < minVal should be removed.
* How to decide maxVal and minVal? Examples:
 maxVal = 0.3 X average magnitude of the pixels that pass NMS

* minVal =0.1 X average magnitude of the pixels that pass NMS
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Edge Linking

* Drop-outs?

 Now using the direction information and the lower threshold, we'll "grow"
these edges.
e |f the current pixel is not an edge, check the next one.
e |f it is an edge, check the two pixels in the direction of the edge (ie,
perpendicular to the gradient direction). If either of them (or both)

maxVal

minVal




Edge Linking

* Drop-outs?

e Now using the direction information and the lower threshold, we'll "grow"
these edges.
e |f the current pixel is not an edge, check the next one.
e |f it is an edge, check the two pixels in the direction of the edge (ie,
perpendicular to the gradient direction). If either of them (or both)
e have the direction in the same bin as the central pixel
e gradient magnitude is greater than minVal
e they are the maximum compared to their neighbors (NMS for these pixels),
then you can mark these pixels as an edge pixel



Edge Linking

* Drop-outs?

e Now using the direction information and the lower threshold, we'll "grow"

these edges.

e |f the current pixel is not an edge, check the next one.

e |f it is an edge, check the two pixels in the direction of the edge (ie,
perpendicular to the gradient direction). If either of them (or both)
e have the direction in the same bin as the central pixel
e gradient magnitude is greater than minVal
e they are the maximum compared to their neighbors (NMS for these pixels),

then you can mark these pixels as an edge pixel

e Loop until there are no changes in the image Once the image stops changing,

you've got your canny edges! That's it! You're done!



Canny Edge Detector

* The most widely used edge detector in computer vision

e Canny shows that the first derivative of the Gaussian closely
approximates the operator that optimizes the product of signhal-to-
noise ratio and localization.
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Tradeoff between Smoothing and Localization

i

Ly

A
) h
21l
. ¥
A /
-\4
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£
J
|
%
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| o '. -_';,‘ -

\". N

Y | i o
[ '& S

L _’JJ Lir-‘-’_ /

I ' _./ _r_J

original Canny with 0 = 1 Canny with 0 = 2

* Note a larger O corresponds to stronger smoothing.
* Smoothed derivative reduces noises but blurs edges.

* Find edges at different scales.
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Summary of Edge Detection

 What is an edge?

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative
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Summary of Edge Detection

* Edge: where pixel intensity changes drastically

 Compute image gradient to find edge, however noises can be
overwhelming and fail the detection

f(x)|

I I I I I i I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f(a):

i i i i i I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Summary of Canny Edge Detection

* Edge: where pixel intensity changes drastically

* Jointly detecting edge and smoothing by convolving with the
derivative of a Gaussian filter

* Non-maximal suppression

* Thresholding and linking (hysteresis):

80



Keypoint Detection



Keypoint Localization

* In addition to edges, keypoints are also important to detect.
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Applications

Separately detect keypoints and then find matching.
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What Points are Keypoints?

e Saliency: interesting points

84



More Requirements

e Saliency: interesting points
* Repeatability: detect the same point independently in both images

No chance to match!
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More Requirements

* Repeatability: detect the same point independently in both images

 Saliency: interesting points
* Accurate localization

86



More Requirements

* Repeatability: detect the same point independently in both images
e Saliency: interesting points

e Accurate localization

* Quantity: sufficient number

No chance to match!
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Repeatability and Invariance

* For a keypoint detector to be repeatable,
it has to be invariant to:

* [[lumination
* Image scale
* Viewpoint

[llumination
invariance

Scale
invariance

R
b,

“ " J Pose invariance
> *Rotation

*Affine

iy,
L
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Corners as Keypoints

» Corners are such kind of keypoints, because they are
 Salient;
* Repeatable (one corner would still be a corner from another viewpoint);
e Sufficient (usually an image comes with a lot of corners);
 Easy to localize.

89



The Properties of a Corner

* The key property of a corner: In the region around a corner,
image gradient has two or more dominant directions
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The Basic Idea of Harris Corner

* Move a window and explore intensity changes within the window

A
' ‘ 4
7

L\
¥

Flat region: no Edge: no change Corner: significant
change in all along the edge change in all
directions direction directions
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The Basic Idea of Harris Corner

Original image
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The Basic Idea of Harris Corner

Local neighborhood of a
corner point (x0, yO)
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The Basic Idea of Harris Corner

(xO+u, yO+V)

Move along direction
(u, v)
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The Basic Idea of Harris Corner

- -

Local neighborhood of a Local neighborhood of
corner point (x0, yO) point (xO+u, yO+v)

95



The Basic Idea of Harris Corner

Change along direction (u, v) =

|

= Y [Ilx+uy+v)—I1(x17y)]?
(x,y)EN

Where N is the neighborhood of (x0, y0)
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Rectangle Window Function Square intensity difference

e DG,y)=[I(x+u,y+v)—I(x7y)

1 in window, O outside

w'(x,y) = w(x —Xo,Y — Yo)
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The Basic Idea of Harris Corner

j — | | Rectangle Window Function

= Y [x+uy+v)—I(, y) 1 in window, O outside

(x,y)EN
| o W) =wl—xy =)
= 2wy I +uy+v) —I(xy)]
X,y
= Yw'(x,y)D(x,y) Square intensity difference

D(x,y)=[I(x +u,y +v) —I(x,y)]
=w'xD
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Harris Detector

First-order Taylor expansion:  [[x+u,y+v] —I[x,y]l =~ Lu + va
L .,
SDGy) = Ux +u,y +v] = Ix YD) & (L + Ly)* = [u, V] P H
Xy Ty

I LL| o,
. — 7%k — Ik
S E(xo,yo)(u’ V) =w*D=lu,v]lw ley Iy2 [v]

Image /




Harris Detector

If we are checking the corner at (x;, y,), then the change along direction
(u0, vO0) is:

E(X(),YQ)(M’ V) ~ [M, V] M(x()9 y()) [z]

;LI [wrIE wrd )

2 / / 2
10, | |\ wEdd) wrl

where M(x,y) =w'*




Harris Detector

;LI [wrE werd )

M(x,y) =w'*
LI, I} w'k (L) w'* I

* M is a symmetric matrix.
* M is a positive semi-definite matrix.

- Simple case: M is diagonal at (x,, yy) : M(x,, y,) = lgl /10] G50, 120
2

.. E(xo,yo)(u, V) ~ [I/l, V] M(XO, y()) _I‘/}t] — /11”2 + /121}2

* This corresponds to an axis-aligned corner.
e If either A = 0, this is not a corner.




Harris Detector

* General case:
since M is a symmetric matrix, perform eigendecomposition:

2 I
Ma,y)y=w=*|" " = R

) R @, >0 1,>0
_ley Iy_

A
0

.
%



Harris Detector

* General case: since M is a symmetric matrix, perform eigen-

decomposition:
12 11| ' 0]
M(x,y)=w'* | x; - R A R (4,20, ,>0)
LI, I 0 Az_
: ~ 2 2 U
B s hig+iv;  where || <Rl

fastest change

' Direction of the
slowest change
The energy landscape is a paraboloid!



Eigenvalues

e Classification of the type of the image point according to the
eigenvalues of M.

A . e
2 Two conditions must be satisfied:

A, A, > b

1</11<k
k A,

A; and A, are small;

E is almost constant in :> “Elat”
all directions region

Ay >> 4,
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Corner Response Function @

* Fast approximation:

1 1
0 = E(Al/lz —a(Ay + 1,)%) + = (A4, — 2t)  ain[0.04,0.06]

2
A, Ay > b

1</11<k
k7,

— Alﬂ,z — C((Al + 2,2)2 —t

= det(M) — aTrace(M)* — t

Orthogonal transformation won’t change the
determinant and trace of a matrix

1e

“Flat”
region

0<0




Choices of Window Functions

Rectangle window

1 in window, 0 outside

M(x,y) =w*

Not rotation-invariant.

17 LI

LI, I

or

Gaussian

M(x,y) = g(o) *

12 LI,

2
_Ix Iy Iy i

Rotation-invariant.



Summary of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function

0 =g()gUy) — [9U )] —algUz) + g5

5. Non-maximum suppression
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Step-by-Step Harris Detector

* Input: two images

Image borrowed from Stanford CS131 108



Step-by-Step Harris Detector

* Compute corner response 6

Image borrowed from Stanford CS131 109



Step-by-Step Harris Detector

* Thresholding and perform non-maximal suppression




Step-by-Step Harris Detector

e Results

Image borrowed from Stanford CS131 111



Properties of Harris Detector

e Corner response is equivariant with both translation and image
rotation.

™ Wj |
57 S
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Properties of Harris Detector

e Corner response is equivariant with both translation and image
rotation.

* Not invariant to scale.

™ Wj dl Bl | I
g % All points will be

classified as edges!
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Scale Invariant Detectors

scale

* Harris-Laplacian?
Find local maximum of: /

— Harris corner detector in
space (image coordinates)

— Laplacian in scale

o SIFT (Lowe)?

Find local maximum of:
— Difference of Gaussians in space

and scale /

ki,

< Laplacian —

< Harris —

scale

Y)Y
AARGAAA

!
O
S
G)
|
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Introduction to Computer Vision

Next week: Lecture 3,
Classic Vision Methods Il

Embodied Perception and InteraCtiol



