
Embodied Perception and InteraCtion Lab Spring 2025

Prof. He Wang

Introduction to Computer Vision

Lecture 2 - Classic Vision I

• Compared to human vision, computer vision deals with the following tasks:
• visual data acquisition (similar to human eyes but comes with many more

choices)
• signal processing and feature extraction (mostly low-level)
• analyze local structures and then 3D reconstruct the original scene (mid-

level)
• understanding (mostly high-level)
• generation
• vision-language tasks
• and further enabling embodied agents to take actions.

2

Recap: Overview of Computer Vision

The Early History of
Computer Vision

3

4

The Birth of Artificial Intelligence

The Dartmouth Conference

August 1956. From left to right: Oliver Selfridge, Nathaniel
Rochester, Ray Solomonoff, Marvin Minsky, Trenchard More,

John McCarthy, Claude Shannon.

Alan Turing and Turing test

1950, Turing wrote the article “Computing machinery and
intelligence”, in which he described what would become
known as the “Turing Test”.

https://en.wikipedia.org/wiki/Turing_test

• A visual perception component of an
ambitious agenda to mimic human
intelligence.

• AI pioneers believed that solving the
“visual input” problem would be
easier than solving higher-level
reasoning and planning.

• Marvin Minsky at MIT asked his
undergrad Gerald Jay Sussman to
“spend the summer linking a camera
to a computer and getting the
computer to describe what it saw”.
However, we know this is not that
easy.

5

Early in 1960s: CV as a Summer Project

6

Early in 1960s: Interpretation of Synthetic Objects

Borrowed from Stanford CS231N Lecture 01.

Ph.D. thesis "Machine Perception of Three-Dimensional Solids"

7

1970s/1980s: reconstruction as the first step

• What distinguished computer
vision from the already
existing field of digital image
processing:

• the desire to recover the
three-dimensional
structure of the world from
images

• And use this as a stepping
stone to- wards full scene
understanding

Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

• Extracting edges and then
inferring the 3D structure of an
object or a “blocks world” from
the topological structure of the
2D lines

8

Basic Ideas

Line labeling (Nalwa 1993)

Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

9

Three-dimensional Modeling of Non-polyhedral Objects

Borrowed from Stanford CS231N Lecture 01.

10

David Marr’s 2.5-D Sketch

Palmer, Stephen E. Vision science: Photons to phenomenology. MIT press, 1999.
Stanford CS 231N Lecture 01.

• 2.5-D Sketch:

• A surface based representation
that bridges 2D and 3D

• Depth-from-X: computed from a
2-D image-based representation
(primal sketch) via extracting
information about

• surface orientation
• depth from a variety of

sources, such as shading,
stereo, and motion.

11

3D Reconstruction

Structure from Motion
(Tomasi and Kanade 1992)

Dense stereo matching
(Boykov, Veksler, and Zabih
2001)

Multi-view reconstruction
(Seitz and Dyer 1999)

Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

12

Recognition and Segmentation

D. Lowe. IJCV, 1992 Normalized Cut (Shi & Malik, 1997)

Histogram of Gradients (HoG) Dalal & Triggs, 2005

13

Descriptors

Credit: https://iq.opengenus.org/object-detection-with-histogram-of-oriented-gradients-hog/

14

Detection

Face Detection, Viola & Jones, 2001

15

CV from the Classic Era to the Deep Learning Era

• Previous works don’t leverage learning.

• However, many techniques and concepts proposed by them are still foundations
for modern computer vision.

• Current trend:
• From non-learning based method to learning-based method

• Rely on big data

• Requires more computation resources.

16

Algorithm: Deep Learning

2018 Turing Awards: Geoffrey Hinton, Yann LeCun, and Yoshua Bengio

17

Data: ImageNet and Its Benchmark

18

Computational Resources: GPU

NVIDIA and its GPU Google and its TPU

19

Today’s Topic

• Low-level vision
• Image processing
• Edge/corner detection
• Feature extraction

• Mid-level vision
• Grouping
• Inferring scene geometry (3D reconstruction)
• Inferring camera and object motion

• High-level vision
• Object recognition
• Scene understanding
• Activity understanding

20

Outline of Today’s Lecture

• Images as functions

• Classic (non-learning) methods
• Edge detectors
• Corner detectors
• Line fitting

Adaptive non-maximal suppression (ANMS) (Brown, Szeliski, and Winder 2005)

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023

Images as Functions

21

22

Images as Functions

Slide borrowed from Stanford CS131

23

Images as Functions

Slide borrowed from Stanford CS131

24

Images as Functions

Slide borrowed from Stanford CS131

25

Images as Functions

Slide borrowed from Stanford CS131

• Image as a function:
• Image gradient:

• In practice, use finite difference to replace gradient.
• !"
!#
|#$#! ≈

"(#!&',)!)+"(#!+',)!)
,

• The image gradient points in the direction of the most rapid change in
intensity.

26

Image Gradient

𝑓 = 𝑓(𝑥, 𝑦)

Image borrowed from Stanford CS131

27

Visualizing Image Gradient

Gradient magnitude: Source: Feifei Li

28

Filters

Slide borrowed from Stanford CS131

29

1D Discrete-Space Systems (Filters)

𝑓[𝑛] → → ℎ[𝑛]System 𝒢

ℎ = 𝒢(𝑓), ℎ[𝑛] = 𝒢(𝑓)[𝑛]

30

1D Filter Example: Moving Average

After moving average with window size = 5,
ℎ[𝑛]Original data 𝑓[𝑛]

31

1D Filter Example: Moving Average

Original data 𝑓[𝑛] After moving average,
ℎ[𝑛]

Weight function
(equal weight)

Let’s use the language of image or signal processing!

32

1D Discrete Convolution (∗)

Filter 𝑔[𝑛]

* =

We can express this moving averaging using convolution!

Original data 𝑓[𝑛] After moving average,
ℎ[𝑛]

ℎ[𝑛] =

Discrete signal

33

Quick Facts of Convolution

ℱ(𝑓 ∗ 𝑔) = ℱ(𝑓)ℱ(𝑔)

Continuous signal

(𝑓 ∗ 𝑔)(𝑥) = ∫-$+.
. 𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡

• Derivative Theorem

• Convolution Theorem

ℱ(𝑓) = ∫!"#$
$ 𝑓(𝑡)exp(−𝑖2𝜋𝜔𝑡)𝑑𝑡ℱ(𝑓)[𝑛] = ∑

!"#

$%&
𝑓[𝑚]exp(−

𝑖2𝜋
𝑀

𝑚𝑛𝑡)

Convolution

Fourier Transform

∴ ℎ = ℱ#$ ℱ(𝑓)ℱ(𝑔)

34

Discrete Convolution: *

* =

Our filter is indeed a rectangular function. What is its Fourier transform?

Filter 𝑔[𝑛]Original data 𝑓[𝑛] After moving average,
ℎ[𝑛]

35

Rectangular Function and its Fourier Transform

𝑔(𝑛)

ℱ(𝑔)[𝑚]

ℱ(𝑔)[𝑚]mainly concentrates
around 0
⇒ 𝑔 is a low-pass filter.

For more information about this discrete Fourier transform, please see
https://flylib.com/books/en/2.729.1/the_dft_of_rectangular_functions.html

https://flylib.com/books/en/2.729.1/the_dft_of_rectangular_functions.html

36

From a Low-Pass Filter Perspective

ℱ(𝑔)[𝑚]

ℱ(𝑔)[𝑚]mainly concentrates
around 0
⇒ 𝑔 is a low-pass filter.

According to Convolution theorem, ℱ(𝑓 ∗ 𝑔) =
ℱ(𝑓)ℱ(𝑔)
ℱ(𝑓)ℱ(𝑔)means the high frequency part of
ℱ(𝑓) turns to 0 in ℱ(𝑓 ∗ 𝑔).

When you removes high frequency parts in the
signal, the signal becomes smooth. That’s how
Fourier transform explains the smoothing effect by
moving average.

https://en.wikipedia.org/wiki/Filter_(signal_processing)

37

Linear System ↔ Linear Filters ↔ Convolution

𝑓[𝑛] → → ℎ[𝑛]System 𝒢

ℎ = 𝒢(𝑓), ℎ[𝑛] = 𝒢(𝑓)[𝑛]

• Linear filtering 𝒢:
•ℎ[𝑛] is a linear combination of values from 𝑓[𝑛]
• The weight of this linear combination is the same at each point 𝑛

• Then 𝒢 is a linear system (function) iff 𝒢 satisfies
𝒢(𝛼𝑓$ + 𝛽𝑓%) = 𝛼𝒢(𝑓$) + 𝛽𝒢(𝑓%)

• It can be proved that linear filters can also be expressed using convolutions.

41

2D Discrete-Space Systems (Filters)

𝑓[𝑛,𝑚] → → ℎ[𝑛,𝑚]System 𝒢

ℎ = 𝒢(𝑓), ℎ[𝑛,𝑚] = 𝒢(𝑓)[𝑛,𝑚]

42

2D Discrete Filter Example: Moving Average

𝑔 =

ℎ[𝑚, 𝑛]

=

Image borrowed from Stanford CS131

43

2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131

44

2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131

45

2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131

46

2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131

47

2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131

48

2D Discrete Filter Example: Moving Average

𝑓[𝑚, 𝑛] ℎ[𝑚, 𝑛]

Image borrowed from Stanford CS131

49

Summary of Moving Average

Slide borrowed from Stanford CS131

50

Non-linear Filtering Example: Binarization via Thresholding

Define a threshold 𝜏, e.g., 𝜏 = 100.

ℎ[𝑚, 𝑛] 𝜏

Image borrowed from Stanford CS131

Edge Detection

51

52

Start with A Task: Lane Detection

How to detect the lane?

https://medium.com/@realderektan/self-driving-car-project-part-1-lane-lines-detector-6d960e2b023

• Edge detector

53

Start with Detecting Edges

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03

• An edge is defined as a region in the image where there is a “significant”
change in the pixel intensity values (or having high contrast) along one
direction in the image, and almost no changes in the pixel intensity values
(or low contrast) along its orthogonal direction.

54

What is an Edge?

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03

• High precision: make sure all detected edges are true edges (via minimizing FP).
• High recall: make sure all edges can be detected (via minimizing FN).
• Good localization: minimize the distance between the detected edge and the ground truth

edge
• Single response constraint: minimize redundant responses

55

Criteria for Optimal Edge Detection

Image borrowed from Stanford CS231A Lecture 10

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

TP: true positives, FP: false positives
TN: true negatives, FN:false negativesLow precision

56

What Causes An Edge?

• Depth
discontinuity

• Surface color
discontinuity

• Surface
orientation
discontinuity

• Illumination
discontinuity

Image borrowed from Stanford CS231A Lecture 10

• An edge is defined as a region in the image where there is a “significant”
change in the pixel intensity values along one direction in the image, and
almost no changes in the pixel intensity values along its orthogonal
direction.

57

Characterizing Edges

Image borrowed from Stanford CS231A Lecture 10

58

Visualizing Image Gradient

Gradient magnitude:
Source: Feifei Li

• Gradient is non-zero everywhere. Where is the edges?
59

Problem

• Consider one row in the image

60

Effects of Noises

Source: Steven Seitz

• Image gradients are too
sensitive to noise.

• Gradients of the true edge is
overwhelmed by noises.

• We need smoothing!

61

Smoothing by Gaussian Filter

𝑔 =
1
2𝜋𝜎6

exp −
𝑥6

2𝜎6 ℱ(𝑔) = exp(−
𝜎6𝜔6

2
)

• The bigger 𝜎 is, the sharper ℱ(𝑔) is. When 𝜎 → +∞,
filter all high-frequence parts and then the signal
becomes a constant.

• The smaller 𝜎 is, the boarder ℱ(𝑔) is. When 𝜎 → 0,
ℱ(𝑔) = 1, no filtering at all.

• Gaussian transforms to another Gaussian,
• low-pass filter!

62

Smoothing by a Low-Pass Filter

Source: Steven Seitz

• Theorem:

• Saves us one operation.
63

Derivative Theorem of Convolution

64

Two-Dimensional Convolution

𝑓 𝑔 =
1

2𝜋𝜎! exp −
𝑥! + 𝑦!

2𝜎!

(𝑓 ∗ 𝑔)[𝑚, 𝑛] = ∑
"#$%

%
∑

&#$%

%
𝑓[𝑘, 𝑙]𝑔[𝑚 − 𝑘, 𝑛 − 𝑙]

*

Source: Feifei Li

65

Derivative of 2D Gaussian Filter

=

Source: Feifei Li

66

Compute Gradient

x-derivative of Gaussian y-derivative of Gaussian

Gradient magnitude Thresholding and Gradient orientation
Source: Feifei Li

67

Non-Maximal Suppression (NMS)

• For each point 𝑞 on grids, compute the gradient
𝑔(𝑞).
• Move along the gradient to get two neighbors:
𝑟 = 𝑞 + 𝑔(𝑞), 𝑝 = 𝑞 − 𝑔(𝑞)
• Perform bilinear interpolation to get 𝑔(𝑝) and
𝑔(𝑟).
• If the magnitude of g(q) is larger than 𝑔(𝑝) and
𝑔(𝑟), 𝑞 is a maximum that should be kept.

Source: J. Hayes

68

Bilinear Interpolation

For 𝑃(𝑥, 𝑦), given its four surrounding grid points
𝑓(𝑄$$), 𝑓(𝑄$%), 𝑓(𝑄%$) and 𝑓(𝑄%%),
how to obtain 𝑓(𝑃) via bilinear interpolation?

First, linear interpolate to obtain 𝑓(𝑅$) and 𝑓(𝑅%)

𝑅7:

𝑅6:

69

Bilinear Interpolation

For 𝑃(𝑥, 𝑦), given its four surrounding grid points
𝑓(𝑄$$), 𝑓(𝑄$%), 𝑓(𝑄%$) and 𝑓(𝑄%%),
how to obtain 𝑓(𝑃) via bilinear interpolation?

First, linear interpolate to obtain 𝑓(𝑅$) and 𝑓(𝑅%)

𝑅7:

𝑅6:

Then, linear interpolate between 𝑓(𝑅$) and 𝑓(𝑅%) to obtain 𝑓(𝑃):

𝑃:

A Simplified Version of NMS

The orientation of each pixel is put into one of the four
bins.

Example: gradient orientation from 22.5 to 67.5 degrees

To check if the central red pixel belongs to an
edge, you need to check if the gradient is
maximum at this point. You do this by
comparing its magnitude with the top left pixel
and the bottom right pixel.

71

Before and After NMS

Thin multi-pixel wide “ridges” down to single pixel width

Source: J. Hayes

• Use a high threshold (maxVal) to start edge curves and a low threshold
(minVal) to continue them.

• Pixels with gradient magnitudes >maxVal should be reserved

• Pixels with gradient magnitudes <minVal should be removed.

• How to decide maxVal and minVal? Examples:

• maxVal = 0.3 × average magnitude of the pixels that pass NMS

• minVal = 0.1 × average magnitude of the pixels that pass NMS

72

Hysteresis Thresholding

Source: J. Hayes

Edge Linking

• Now using the direction information and the lower threshold, we'll "grow"
these edges.
• If the current pixel is not an edge, check the next one.
• If it is an edge, check the two pixels in the direction of the edge (ie,

perpendicular to the gradient direction). If either of them (or both)

• Drop-outs?

Edge Linking

• Now using the direction information and the lower threshold, we'll "grow"
these edges.
• If the current pixel is not an edge, check the next one.
• If it is an edge, check the two pixels in the direction of the edge (ie,

perpendicular to the gradient direction). If either of them (or both)
• have the direction in the same bin as the central pixel
• gradient magnitude is greater than minVal
• they are the maximum compared to their neighbors (NMS for these pixels),

then you can mark these pixels as an edge pixel

• Drop-outs?

Edge Linking

• Now using the direction information and the lower threshold, we'll "grow"
these edges.
• If the current pixel is not an edge, check the next one.
• If it is an edge, check the two pixels in the direction of the edge (ie,

perpendicular to the gradient direction). If either of them (or both)
• have the direction in the same bin as the central pixel
• gradient magnitude is greater than minVal
• they are the maximum compared to their neighbors (NMS for these pixels),

then you can mark these pixels as an edge pixel
• Loop until there are no changes in the image Once the image stops changing,

you've got your canny edges! That's it! You're done!

• Drop-outs?

76

Canny Edge Detector

JJ. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714,
1986.

• The most widely used edge detector in computer vision
• Canny shows that the first derivative of the Gaussian closely

approximates the operator that optimizes the product of signal-to-
noise ratio and localization.

• Note a larger 𝜎 corresponds to stronger smoothing.
• Smoothed derivative reduces noises but blurs edges.
• Find edges at different scales.

77

Tradeoff between Smoothing and Localization

Image credit: J. Hayes

78

Summary of Edge Detection

• What is an edge?

79

Summary of Edge Detection

• Edge: where pixel intensity changes drastically
• Compute image gradient to find edge, however noises can be

overwhelming and fail the detection

80

Summary of Canny Edge Detection

• Edge: where pixel intensity changes drastically
• Jointly detecting edge and smoothing by convolving with the

derivative of a Gaussian filter
• Non-maximal suppression
• Thresholding and linking (hysteresis):

Keypoint Detection

Some slides are borrowed from Stanford CS131.

81

• In addition to edges, keypoints are also important to detect.

82

Keypoint Localization

83

Applications: Image Matching

Separately detect keypoints and then find matching.

Slide borrowed from Stanford CS131

• Saliency: interesting points

84

What Points are Keypoints?

Image borrowed from Stanford CS131

• Saliency: interesting points
• Repeatability: detect the same point independently in both images

85

More Requirements

Image borrowed from Stanford CS131

• Repeatability: detect the same point independently in both images
• Saliency: interesting points
• Accurate localization

86

More Requirements

Image borrowed from Stanford CS131

• Repeatability: detect the same point independently in both images
• Saliency: interesting points
• Accurate localization
• Quantity: sufficient number

87

More Requirements

Image borrowed from Stanford CS131

88

Repeatability and Invariance

• For a keypoint detector to be repeatable,
it has to be invariant to:
• Illumination
• Image scale
• Viewpoint

Image borrowed from Stanford CS131

• Corners are such kind of keypoints, because they are
• Salient;
• Repeatable (one corner would still be a corner from another viewpoint);
• Sufficient (usually an image comes with a lot of corners);
• Easy to localize.

89

Corners as Keypoints

Image borrowed from Stanford CS131

• The key property of a corner: In the region around a corner,
image gradient has two or more dominant directions

90

The Properties of a Corner

Image borrowed from Stanford CS131

• Move a window and explore intensity changes within the window

91

The Basic Idea of Harris Corner

Flat region: no
change in all
directions

Edge: no change
along the edge
direction

Corner: significant
change in all
directions

Image borrowed from Stanford CS131

92

The Basic Idea of Harris Corner

Original image

93

The Basic Idea of Harris Corner

(x0, y0)
Local neighborhood of a
corner point (x0, y0)

94

The Basic Idea of Harris Corner

(x0, y0)

(x0+u, y0+v)

Move along direction
(u, v)

95

The Basic Idea of Harris Corner

Local neighborhood of a
corner point (x0, y0)

Local neighborhood of
point (x0+u, y0+v)

96

The Basic Idea of Harris Corner

—| |
2

Change along direction (u, v) =

= ∑
(',))∈,

[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]%

Where N is the neighborhood of (x0, y0)

97

Notation

𝑤-(𝑥, 𝑦) = 𝑤(𝑥 − 𝑥., 𝑦 − 𝑦.)

Rectangle Window Function

𝐷(𝑥, 𝑦) = [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]%

Square intensity difference

98

—| |
2

= ∑
(",$)∈'

[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)](

The Basic Idea of Harris Corner

= ∑
',)
𝑤-(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]%

𝑤8(𝑥, 𝑦) = 𝑤(𝑥 − 𝑥9, 𝑦 − 𝑦9)

Rectangle Window Function

𝐷(𝑥, 𝑦) = [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]!

Square intensity difference= ∑
",$
𝑤)(𝑥, 𝑦)𝐷(𝑥, 𝑦)

= 𝑤) ∗ 𝐷

 X

Harris Detector

I[x + u, y + v] − I[x, y] ≈ Ixu + Iyv

∴ D(x, y) = (I[x + u, y + v] − I[x, y])2 ≈ (Ixu + Iyv)2

First-order Taylor expansion:

= [u, v][
I2
x IxIy

IxIy I2
y] [u

v]

∴ E(x0,y0)(u, v) = w′ * D = [u, v] w′ * [
I2
x IxIy

IxIy I2
y] [u

v]

Image borrowed from Stanford CS131

 X

Harris Detector

E(x0,y0)(u, v) ≈ [u, v] M(x0, y0) [u
v]

where M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y] = [

w′ * I2
x w′ * (IxIy)

w′ * (IxIy) w′ * I2
y]

If we are checking the corner at , then the change along direction
(u0, v0) is:

(x0, y0)

Image borrowed from Stanford CS131

• M is a symmetric matrix.
• M is a positive semi-definite matrix.

• Simple case: M is diagonal at (x0, y0) :

 X

Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)

∴ E(x0,y0)(u, v) ≈ [u, v] M(x0, y0)[u
v] = λ1u2 + λ2v2

• This corresponds to an axis-aligned corner.

• If either , this is not a corner.λ ≈ 0

M(x0, y0) = [λ1 0
0 λ2]

(since all its principle minors .)≥ 0

Image borrowed from Stanford CS131

M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y] = [

w′ * I2
x w′ * (IxIy)

w′ * (IxIy) w′ * I2
y]

• General case:
 since M is a symmetric matrix, perform eigendecomposition:

 X

Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y] =

R is an orthogonal matrix, s are the eigenvalues of M!λ

• General case: since M is a symmetric matrix, perform eigen-
decomposition:

 X

Harris Detector

(λ1 ≥ 0, λ2 ≥ 0)M(x, y) = w′ * [
I2
x IxIy

IxIy I2
y] =

∴ E(x0,y0)(u, v) ≈ λ1u2
R + λ2v2

R [uR
vR] = R [u

v]where

The energy landscape is a paraboloid!

Image borrowed from Stanford CS131

• Classification of the type of the image point according to the
eigenvalues of M.

104

Eigenvalues

Image borrowed from Stanford CS131

𝜆$, 𝜆% > 𝑏

1
𝑘
<
𝜆!
𝜆"
< 𝑘

Two conditions must be satisfied:

• Fast approximation:

105

Corner Response Function 𝜃

𝛼in[0.04,0.06]𝜃 =
1
2
(𝜆$𝜆% − 𝛼(𝜆$ + 𝜆%)%) +

1
2
(𝜆$𝜆% − 2𝑡)

= 𝜆$𝜆% − 𝛼(𝜆$ + 𝜆%)% − 𝑡

1
𝑘
<
𝜆7
𝜆6
< 𝑘 𝜆$, 𝜆% > 𝑏

= 𝑑𝑒𝑡(𝑀) − 𝛼𝑇𝑟𝑎𝑐𝑒(𝑀)% − 𝑡
Orthogonal transformation won’t change the
determinant and trace of a matrix

 X

Choices of Window Functions

Not rotation-invariant. Rotation-invariant.

M(x, y) = w * [
I2
x IxIy

IxIy I2
y] M(x, y) = g(σ) * [

I2
x IxIy

IxIy I2
y]

or

Rectangle window

107

Summary of Harris Detector

1. Image derivatives

2. Square of derivatives

3. Rectangle window or Gaussian filter

4. Corner response function

5. Non-maximum suppression

𝜃 = 𝑔(𝐼>6)𝑔(𝐼?6) − [𝑔(𝐼>𝐼?)]6 − 𝛼[𝑔(𝐼>6) + 𝑔(𝐼?6)]6 − 𝑡

• Input: two images

108

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Compute corner response 𝜃

109

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Thresholding and perform non-maximal suppression

110

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Results

111

Step-by-Step Harris Detector

Image borrowed from Stanford CS131

• Corner response is equivariant with both translation and image
rotation.

112

Properties of Harris Detector

Image borrowed from Stanford CS131

• Corner response is equivariant with both translation and image
rotation.
• Not invariant to scale.

113

Properties of Harris Detector

Image borrowed from Stanford CS131

114

Scale Invariant Detectors

Slides borrowed from Stanford CS131

Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 3,
Classic Vision Methods II

Introduction to Computer Vision

