Introduction to Computer Vision

Lecture 15
Generative Model

Prof. He Wang

Embodied Perception and InteraCtion'tab SP

e Assignment 4 (Point Cloud Learning, Detection & RNN)
* Released on 5/24
 Due on 6/8 11:59PM

* Final exam
* Time: 6/18

* Scope: all the lectures after midterm including today’s lecture.

e Question types: similar to midterm exam.
* In English, all terms included in our slides won’t be explained.
* 1-page A4-size cheat sheet is allowed .

Generative Models

Some slides are borrowed from Stanford CS231N.

Generative Modeling

Given training data, generate new samples from same distribution

5”4 [[pmode.ooj = Fjaif

Training data ~ p . .(x)

Objectives:
1. Learnp__,,(X) that approximates p_,_(X)

2. Sampling new x fromp_ . (x)

Generative Modeling

Given training data, generate new samples from same distribution

J 4 Iearmng [medel(X)} S%pliigg ’;4

Training data ~ p,_. (X)

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve forp_ . (x)
- Implicit density estimation: learn model that can sample from p__._(x) without
explicitly defining it.

Why Generative Model?

i o "
4 ¥ o = o = | 5
] e B E :
4 85N f . - .
5 3 - J ‘4
-— 5 Fi= 0 £
Q:"-A:.'; Fa . »>
i i, N !
= & >, T - 4
4 . : 2 -)
- : B e -
- . . - .
- ™ -~
Y - E el

- Realistic samples for artwork, super-resolution, colorization, etc.

- Learn useful features for downstream tasks such as classification.

- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and
reinforcement learning applications)

- Many more ...

Generative Modeling

Richard Feynman: “What | cannot create, | do not understand”

Generative modeling: “What | understand, | can create”

Discriminative vs. Generative

Discriminative Generative

« Y: labels, X: inputs * Xis all the variables

* Learn P(Y|X) *P(X)orP(X,Y) (if

labels are available)

Taxonomy of Generative Model

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
- : GSN
Fully Visible Belief Nets \\
- MADE Variational Markov Chain Diffusion Model
- PixelRNN/CNN . :
- NICE / RealNVP Variational Autoencoder Boltzmann Machine
- Glow

Ffjor d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

10

Taxonomy of Generative Model

Direct
Today we mainly discuss GAN
the most popular three Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain

Fully Visible Belief Nets / \\ GSN

- NADE - - . . .

- MADE Variational Markov Chain Diffusion Model

- PixelRNN/CNN . . .

- NICE / RealNVP Variational Autoencoder Boltzmann Machine

- Glow
Ffjor d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Network (FVBN)

Explicit density model

p(CIJ) :p(m17m27'“ 7mn)

T T

Likelihood of Joint likelihood of each
image x pixel in the image

Fully Visible Belief Network (FVBN)

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

o

Likelihood of Probability of i'th pixel value
iImage X given all previous pixels

Then maximize likelihood of training data

Fully Visible Belief Network (FVBN)

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

1

p(z) = Hp(milmla ey Ti—1)
T i=1 T

Likelihood of Probability of i'th pixel value
image X given all previous pixels
Complex distribution over pixel

e . values => Express using a neural
Then maximize likelihood of training data ctwork!

Taxonomy of Generative Model

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
- : GSN
Fully Visible Belief Nets \

- NADE : / :

- MADE Variational Markov Chain

- | PixelRNN/CNN | . :

- "NICE RealNVP Variational Autoencoder Boltzmann Machine

- Glow

Ffjor d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

PixelRNN and PixelCNN

PixelRNN
@)
Pros: . e
- Can explicitly compute likelihood @ ®© O
PX) - ¢ 0000
- Easy to optimize
- Good samples @ © © o0 O

4

- Sequential generation => slow

PixelCNN

Variational Autoencoders
(VAE)

Some slides are borrowed from Stanford CS231N.

Taxonomy of Generative Model

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ SN
- NADE — —18
- MADE Variational Markov Chain
- PixelRNN/CNN — .
- NICE / RealNVP Variational Autoencoder Boltzmann Machine
- Glow

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

- Ffjord

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

19

Recap of Autoencoder

Reconstructed data

- , b =2
I;?]lr;) Zuucshe:jhfot features L2 Loss function: Doesn’t use labels! '3‘5@
reconstruct original data |z — &[|% = n!sqs
-H; feiky

Encoder: 4-layer conv
Decoder Decoder: 4-layer upconv

e —

-
>

Features A Input data

: Bem=Na
Encoder ., ﬁ@
Input data i n QQW

bl < WS

Recap of Autoencoder

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed T Features capture factors of
input data A variation in training data.
Decoder
But we can’t generate new
Features b images from an autoencoder

A because we don’t know the

Encoder space of z.
Input data N How do we make autoencoder a

generative model?

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {z(%) IV | is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional T

po-(z | 2)

Sample from
true prior

()~ P (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {g:(i)}{\’: , is generated from the distribution of unobserved (latent)

representation z

Sample from
true conditional

po-(z | 2)

Sample from
true prior

()~ P (2)

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to
generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

We want to estimate the true parameters 9*
of this generative model given training data x.

Sample from _
true conditional 1) How should we represent this model?
po- (x| 2)
Choose prior p(Z) to be simple, e.g. a standard
Sample from normal distribution V" (0, I). Reasonable for
true prior A latent attributes, e.g. pose, how much smile.
2% ~ py (2)

Conditional p(x|Zz) is complex (generate
image) => represent with a probabilistic neural
network that is also a Gaussian.

Variational Autoencoders

We want to estimate the true parameters 9*
of this generative model given training data x.

Sample from _
true conditional X How to train?
po- (x| 21)
Learn model parameters to maximize likelihood
of training data
Sample from
true prior
20 ~ g (2) & po(x) = fP(Z)Pe (x|z)dz

25

Q: What is the problem with this?
Intractable!

Variational Autoencoders: Intractability

(V4
Data likelihood: pe(x) = | p(2)pe(x|2)dz

f

Standard normal distribution V" (0, I)

Data likelihood: pe(z) = [pe(2)pe(z|2)dz

Variational Autoencoders: Intractability

v Vv
po(x) = | p(2)pe(x|2)dz

\

Decoder neural network

Data likelihood:

Note that this decoder pg (x|Z) needs to be a |
probabilistic function, we will assume this / \
probability distribution is also a Gaussian and | Ha|z | | Yig|2 |
then this decoder network only needs to predict

<

Hx|z» 2:x|z-

Probabilistic decoder pg (x|2)

Variational Autoencoders: Intractability

v V
Data likelihood: pe(x) = | p(2)pe(x|2)dz

f

Intractable to compute p(x|z) for every Z!

28

Variational Autoencoders: Intractability

v V
Data likelihood: pe(x) = | p(2)pe(x|2)dz

f

Intractable to compute p(x|z) for every Z!

Po(x) = E, p[pe(x|2)]

Can we use Monto Carlo estimation?
~ 1Nk (4) ()
logp(z) ~ log + > i, p@(a:[z), where z'*) ~ p(z)

Unbiased but the variance is very high!

Variational Autoencoders: Intractability

Data likelihood: Po(x) = fp(Z)Pg (x|z)d;_ Computing integral is intractable

Try another way:

Polr.z) 1 V(z) (xI2)
pe<z|x>‘p9<z|x>fp Po

Pe(X) =

30

Standard normal distribution V" (0, I)

Variational Autoencoders: Intractability

Data likelihood: Po(x) = fp(Z)Pg (x|z)d;_ Computing integral is intractable

Try another way:

v

p(2)pe (x|2)

\

Probabilistic decoder

Pe(x,2) _
pe(z|x) pe(z|x)

Pe(X) =

Variational Autoencoders: Intractability

Data likelihood: Po(x) = fpe (2)pe (x|z)jz_ Computing integral is intractable

Try another way:

po(x,z) _
Pe(zlx) po(zlx) p(2)pe(x|2)

/ 5

?

Pe(X) =

Variational Autoencoders: Intractability

Data likelihood: Po(x) = fpe (2)pe (x|z)jz_ Computing integral is intractable

Po(x,2z) _ pa(2)pe(x|2)

Try another way: X) = =
Pol) = e @)~ peal®)

Unfortunately, all we know about this term is

Po(x,2) _ p(2)pe(x|2)
Po (X) Do (X)

33

Pe (z|x) =

Intractable data likelihood

Variational Autoencoders

Can we learn a distribution g4 (z|x) to approximate

Po(z]x)? N

Probabilistic encoder

The probabilistic encoder T I

q¢ (z|x) will also be a Encoder network
Gaussian distribution, which 7¢(2|z) \/

Input Data h

takes input x and outputs
Hz|x» z:zlx-

How to Learn Variational Autoencoders

e VAE is a probabilistic Variational Autoencoder (VAE)
autoencoder. T SHP
Decoder network
— N
e How to learn: 4
. . Sample z from z|x ~ N([,Lzm, Ez[:c)
e Build a loss (negative log- T~
I|k€||h00d) L = _lng9,¢ (x) Encoder network uzvlm\/zvzlx
e Minimize £ with respect to 9(2|7)

Input Data i

¢ and 6 (or maximize

logpg ¢ (X))
e However, this term
laocn~ . (v) ic <till intractahle

Variational Autoencoders

log po(z) = B s i 0 {log pg(x(i))} (po(z) Does not depend on 2)
po(z) | 2)P (2)
po(z |)

po(z | 2)P (2) gp(2 |)
po(z | @) gg(z | @)

=E, |log] (Bayes’ Rule)

=E, |log] (Multiply by constant)

: (4) (4)
=E, [logpg(az(z) | z)] -E, [log M] +E, [log Mx())] (Logarithms)
Po(2) po(z | z0)

= E, [logps(z® | 2)] — Dxr(as(z | e?) 1P (2)) + Drrlas(z |) || po(z | 2))

M

The expectation wrt. z (using
encoder network) let us write
nice KL terms

Variational Autoencoders

log pe () = B, g,(zl2®) {logpg(x(i))} (pe(x?) Does not depend on 2)

J "
We want to [
maximize the ¥
data
likelihood =E,

po(z | 2)P (2)
po(z | @)
pe(z | 2)P (2) gg(z | V)

po(z | 2) gy(2 | ™)

_ | (i) (i)
log pp(z@ | z)] —E, llog M] +E, [log M] (Logarithms)
- po () po(z | z"))

log] (Bayes’ Rule)

log] (Multiply by constant)

ogps(2) | 2)| — Dicr(gs(z | #9) || P (2)) + Dicr(ao(z | 27) || po(2 | 29))

*

Decoder network gives pe(x|z), can
compute estimate of this term through
sampling (need some trick to
differentiate through sampling).

Variational Autoencoders

log pe () = B, g,(zl2®) {logpg(x(i))} (pe(x?) Does not depend on 2)

i (2)
=E. |log po(a™ | z)P (Z)] (Bayes’ Rule)
/ 8 Ptz [20)
i (2) (2)
We Yva_nt to . |log Po (™ | z)P (2) 4o(2] @ .) (Multiply by constant)
maximize the I po(z | ;p(z)) 9s(2 | x(z))
Qatq - : s (2 | (1)) e (2 | ()
likelihood =E, logpe(x(l) | z)] —E. [log —] +E, llog —] (Logarithms)
: po(z) po(z | z(9)
—E. [logps(e® | 2)] = Dicr(go(= | 29) | P (2)) + Dicr(as(= | &®) [| po(| 2))
Decoder network gives p,(x|z), can This KL term (between Pe(Z[X) intra?table (saw
compute estimate of this term through ~ Gaussians for encoder and z ~ €arlier), can't compute this KL
sampling (need some trick to prior) has nice closed-form term :(But we know KL

differentiate through sampling). solution! divergence always >=0.

ELBO

log pg () = E, qs(z]z) [logpg(:c(i))} (po (') Does not depend on z)

i (2)
/ =E. |log pol ™ | Z)(i (Z)] (Bayes’ Rule)
We want to : po((f |) i
maximize the [pe(x™ | 2)P (2) g(2 | V) ,
. =E, |log oz 2 oz | 2D) (Multiply by constant)

likelihood i

. (4) (4)
=E, |logps(z? | z)] —E. |log 9o(z] %) +E, [log ——F—= ap(2 |) (Logarithms)
: Po(2) po(z |)

=|E, :logpe(x(i) | Z)] — Dg1(gs(2 | g;(z‘)) | (2)|+ DKL((_]¢(Z | 29)| oz | x(i))z

L(z9,0,¢) >0
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

This lower bound is widely referred as Evidence Lower BOund (ELBO).

ELBO

log pp(zV) = E, g, (2]z®) [logpg(a:(i))] (pg(2?) Does not depend on z)

po(z | 2)P (2)
po(z | @)
(2) (2)

reconstruct < E, |log pg(:c(|| Z)(Z)(Z) q¢Ez : m(i);] (Multiply by constant)
the input data\- L o .
_E, \Kgpe(xm)] - E. llog M] n [10 qs(2 | 2)

: 216 po(z | ()

= \>]]
—E. [logpo(e" | 2)] - Dici(go(= | 49T p(a [+ Dicslao(z | =

(i))
L(z", 0, 0) 20
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

=E, |log] (Bayes’ Ru]e) Encoder:
I make approximate
posterior distribution

close to prior

Decoder:

z

] (Logarithms)

Ips(z | =)

This lower bound is widely referred as Evidence Lower BOund (ELBO).

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound (ELBO)

E. [logpo(2) | 2)| - Dicrlag(z | 27) || p(z))

-

£(zD, 0, ¢)

43

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpa(x(i) | 2)] —ADxr(as(z | 2) [p(z)

£(z9,0,4)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data T

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(z) | 2)] |Dxcr(s(2 | 2D) || p(z)

£(zD,0,6)

l‘l’2|$ zzlw
Encoder network
g (2|) \/

Input Data h

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpa(ff(i) | 2)] -IDKL(%(Z | @) | p(z)j

L(z®,6,9)

Dkr, (N(:u'z]a:, Zz\w)l‘N(()? I))

Have analytical solution

Make approximate
posterior distribution
close to prior

Hz|z) z|z
Encoder network
wiele) N

Input Data "

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

(@) (i)
E. [logp"(x |2)} Drrlas= 1251 p(z) Not part of the computation graph!
L(zD,0,0) \
2

o - Sample zfrom 2|z ~ N (5, X2)2)
ake approximate
posterior distribution / \
close to prior Hz|z Ez|x
Encoder network \/
q¢(z|z)

Input Data b

Variational Autoencoders

Reparameterization trick to make
sampling differentiable:

Sample € ~~ N(O, I)
2= Mz T €Oz

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(z?) |)] | Drer(as(z | 2D || p(z)

L(z®,0,p)

2
Sample z from z|:1: ~ N(/-I/zlma 2z|x)

Make approximate
posterior distribution / \
close to prior Hz|z Ez|x
Encoder network \/
79 (2|)

Input Data b

Variational Autoencoders

Reparameterization trick to make
sampling differentiable:

Putting it all together: maximizing the

likelihood lower bound Sample € ~ N(O, I Input to
. the graph
E. [logpo(e? | 2)| |- Drslas(z | D) || p(z) Z =|Hzlz
L(z®,0,9) Part of computation graph

2
Sample z from z|:1: ~ N(/-I/zlma 2z|x)

Make approximate
posterior distribution / \
close to prior Hz|z Ez|x
Encoder network \/
79 (2|)

Input Data b

Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpa(l'(i) | 2)} Drr(gs(z | 2¥) || p(z)z Ha|z 2ig|z

L(z®,0,9) Decoder network \/
po(z|2)

<
Sample z from z|:v ~ N(/-l'z|:1;) Zz|a,-)

T

ILIIZ|:B Zzlm
Encoder network
o) S

Input Data I

Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the
likelihood lower bound

/:E\

E, [logpa(x(i) | z)} L(ge(z | z) || p(z) Hzx|z Za:lz
L(z® 0, ¢) Decoder network \/
po(x|z)
yA
Sample zfrom 2|z ~ N (fhy2, 22 |2)
Note that this term is still intractable, which we need /
to use Monte Carlo estimation, which simply removes /‘l’zlw 2z|a:

E Encoder network
Z-
46 (2|z) \/

Input Data ¥

Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the
likelihood lower bound

/mv\\/

ol Sl
L(z®,86,) Decoder network \/ o
po(x|z)
yA
Sample zfrom 2|z ~ N (fhy2, 22 |2)
In practice, some implementations simply /
set Zx|z = [, then this reconstruction term Hz|x Zz|m

becomes MSE loss: Encoder network \/v
12D — phy2] |2 e (z|T)

Input Data ¥

Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound / T \

logpg(2"” | 2) — Drr(as(z | 27) [p(z) Hz|z Y|z
L(zD,0,0) Decoder network \/
po(x|2)
For every minibatch of input <
data: compute this forward Sample z from z|z ~ N(,Ufz|:1:7 Ylz)
pass, and then backprop! / \
I‘l'Zlm Zzlm

Encoder network
N

Why called variational? Input Data XL

Variation and Functional

e Functional: mappings from a set of functions to the real
numbers, where the independent variable is a function.

e Variations §: small changes in functions and functionals, to
find maxima and minima (collectively called extrema) of
functionals.

54

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)

Variation and Functional

e Functional: mappings from a set of functions to the real
numbers, where the independent variable is a function.

e Variations §: small changes in functions and functionals, to
find maxima and minima (collectively called extrema) of
functionals.

e Example: Find the shortest curve to connect two points, A
and B, in a 2D plane.
e Independent variable: the function of the curve f(x,y)

e Functional I: f(x,y) » R (length | = fff(x,y)ds)

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)

Why Called Variational?

e Training VAE can be seen as solving a variational problem (to
obtain the extrema of the functional):

e FLBOis a functional of g(z|x) and p(x|z).
*The variational problem to solve: p, ¢ = argmax, , ELBO

e Solving this particular problem is called variational
inference.

e This is a kind of approximate inference, since it can’t give
your the true data log probability logp (x).

e Instead, it gives your the lower bound of logp(x), that is
ELBO.

Variational Autoencoders

e |n reality, we use 6, ¢ to parameterize p, q:
e The set of functions (or called variational family):

g (2|x), pg (2|x)

*Problem to solve: ¢,0 = argmaxy g ELBO
e Becomes a known problem: to obtain the maximum of a
function (not a functional anymore!)
e \We can use gradient descent on ¢ and 6.

57

Variational Inference

e From the perspective of classic statistical learning, this
approximate inference is done via solving a variational problem
(another mainstream method is MCMC sampling), so it is called
variational.

e From a modern perspective, training VAE is essentially the
same with training other neural networks.
e All neural network trainings can be seen as solving
variational problems!
e Functional: your loss function
e Independent variable: your neural network function

e Hawever naohody, calle i+ 1n thic wav anyvy maore

Variational Autoencoders: Generating Data

Our assumption about data generation
process

Sample from
true conditional h

po- (x| 29)

Decoder
network
Sample from

true prior >
1)~ P (2)

59

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Generating Data

Our assumption about data generation Now given a trained VAE:
process use decoder network & sample z from prior!
Sample from P
true conditional €I
Dy~ (a: | z(i)) Sample x|z from sv|z NN(uw|z,Zw|Z)
Decoder / \
network Hz|z Zmlz
Sample from
true prior Decoder network \/
(i) < po(z|2)
2" ~ py (2) y

Sample z from z ~ A (0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Generating Data

(Vs
-
()
®)
O
O
C
(V)
O
=
>
<
(qV)
C
O
i 5}
(qe)
o
)
=

Use decoder network. Now sample z from prior!

QAN NANNNANNN NSNS NNNNS
QA EHLELLLLLLWN NN~
QALK LLLOVVVY YN~~~
QAVANININN L to o ©VOVVY e -~~~
QAVODHHINNRWWBPBVIVVY W - —-—
QOOONOHINHINIMNNHOoEBIDIYOII Y W - ——
QAQOIMIMMNMMNKH MDY I D @ - ——
QOODOMMMM NN ®OODD D — —
QODMME MM MNNM®DDD DD e —
QOOMMEM MM O 00O W N o om om = —
QO "N 000000 0N en o o —
R e L L Rl ol R R
it orororororrreso oo~
JadddddogorororororrrTaaonn~
JAddadadadorrrrrrFTIIIINN
SddddagrorrrrrrIIIIRINN
SAdAddTTrTrrrrrrr>IrP™22RNN
% I g gl il il <l <ol ol ol ol ol ol O L UL NI NN

Emlz

<8

=

Hzx|z

Sample x|z from x|z ~ N (g2, Xz2)

Decoder network
po(x|2)

2
Sample z from z ~ A(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Data

ing

Generat

Vs
-
(D)
O
O
O
C
(V)
O
s
>
<
(qV)
C
O
i
(qV)
o
(qV)
=

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

QAN NANNANANNNN NSNS NNNNS
QA EELELLLLLWN NN~
QAVIVINNNKELELLLVVYY YN~
QUAVVUININNGE G WVVVY e~~~
QAVVHIHINNNWWBPBVIVIY W - ——
QOOODNHINININMHEBIBDIVIY W - ——
QOOQOMMN NN oY MO YYD S @ - ——
QOOOMMNMNMMNNM®OODD D" — —
QODMMMIN NN N MMDEDD DD o e e —
QOMMEM M " 000000 oo~ —
DA% 0 0P 000000 00 o~ O~ 0~ P~ o~
R e L L ol o R
il cforororororrrso oo~
Jaddddogororrororrrrsaaan~
JadadadaddorrrrrrdTIIIINN
SAddddgorrrrrrdITITIRIRINN
AT TTTTrrrrrr>Irr™2R™RANN
S B g gl il ol ol ol ol ol ol U N L UL NN

< >

Vary z,

z:zzlz

i

Hzx|z

Sample x|z from £E|z e N(,“x|z7 Zgc|z)

Decoder network
po(x|2)

4
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,

Variational Autoencoders: Generating Data

. . ..J'.J.M b _‘
Diagonal prior on z

=> mdepgndent Degree of smile
latent variables

)
\ ;:‘-*‘-‘ i3
Different | ‘ qa. ./
dimensions of z Vary z, A | :qa '
encode r T | ﬂﬂﬂ‘ .
interpretable factors r X ~ - e -
of variation v E’! .a b i g

44444444

b - Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary Z, —

Variational Autoencoders: Generating Data

Diagonal prior on z
=> independent Degree of
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

)

Also good feature representation that
can be computed using q ¢(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

smile
\ A &
Vary z,

\/

ddddd

Variational Autoencoders: Generating Data

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.

Generative Adversarial
Networks (GAN)

Some slides are borrowed from Stanford CS231N.

Taxonomy of Generative Models

Direct
GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
Fully Visible Belief Nets / \ SN
- NADE . :
- MADE Variational Markov Chain
- PixelRNN/CNN . .
- NICE / RealNVP Variational Autoencoder Boltzmann Machine
- Glow

F ijl’ d Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

po(z) = Hp9($i|931, ey Ti1)
1=1

VAEs define intractable density function with latent z:

po(z) = / po(2)pe(]2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: not modeling any explicit density function!

69

Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

70

Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

f

Generator
Network

f

Input: Random noise z

But we don’t know which Output: Sample from
sample Z maps to Wh,'Ch training distribution

training image -> can't
learn by reconstructing
training images

What loss function should we
use?

71

Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

f

Generator
Network

f

Input: Random noise z

Objective: generated

images should look “real”

sample Z maps to Wh,'Ch training distribution
training image -> can't
learn by reconstructing
training images

72

Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

Output: Sample from Discriminator | _ Real?

training distribution Network Fake?
t gradient
Generator
Solution: Use a discriminator Network

network to tell whether the _ . f
generate image is within data NPut: Random noise Z
distribution (“real”) or not

73

Training GANs: Two-Player Games

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

Dlscrlmmator Network

Fake Images Real Images
(from generator) (from training set)

Generator Network

*

Random noise | z |

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

74

Training GANs: Two-Player Games

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake L o
\ Discriminator learning signal

Generator learning Sigflal/ Discriminator Network

Fake Images ‘
(from generator) ?
A
Generator Network

*

Random noise | z |

Real Images
(from training set)

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

75

Training GANs: Two-Player Games

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:
I%in IIleaX |:E$diata,].Og ng (x) + Esz(z) log(]‘ o Dod (Gog (z))):|
g d

Genérator

objective Discriminator

objective

76

Training GANs: Two-Player Games

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emrvpdm log Dy, (2) + Eznp(z) 10g(1 — Do, (Go, (Z))l)}
g d
Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

1

77

Training GANs: Two-Player Games

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min mt [Ex ., 108004 (2) + Ex ey o8(1 - Doy (o, (2)]
> d L J

Discriminator output Discriminator output for
for real data x generated fake data G(z)

|

78

Training GANs: Two-Player Games

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Ewdm log D, (z) + E,p(z) log(1 — D, (Go, (z)))]
L__'*l | I J

0, 04

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (6) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

79

Training GANs: Two-Player Games

Minimax objective function:
min max |Egnpg,, 108 Do, () + Eenp(z) 108(1 = Do, (Go, (2)))]

0, 04

Alternate between:
1. Gradient ascent on discriminator

2% By, 108 Do, (2) + Earps)108(1 = Do, (Go, (2)))]

2. Gradient descent on generator
n;in]Ezwp(z) log(l — ng (Ggg (Z)))

80

Training GANs: Two-Player Games

Minimax objective function:
min max [Emm log Do, (2) + Ep(z) log(1 — Do, (G, (2)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

Héa'x [wavpdata log Dy, (CE) + IEsz(z) log(1 — Dy, (Geg (z)))}
d

2. Gradient descent on generator

) When sample is likely
rr(}ln IEsz(z) log(1 — Ded(Geg (Z)))fake, want to learn from
g it to improve generator .|

In practice, optimizing this generator objective (m.ove to the right on X
axis).
does not work well! -

81

Training GANs: Two-Player Games

Minimax objective function:
min max [Emm log Do, (2) + Ep(z) log(1 — Do, (G, (2)))]

0, 6a

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

rréax [Ea:rvpdam log Dy, (x) + Ezwp(z) log(1 — Dy, (Gﬂg (z)))} dominated by region
4 where sample is

2. Gradient descent on generator already good

) When sample is likely
r%1n E,p2) log(1 — Ded(Geg (2))) fake, want to learn from
g it to improve generator .|

In practice, optimizing this generator objective g:iz\)/e to the right on X/f,x
does not work well! : |
BUt gradient in this _d0.0 0.2 0.4 0.6 0.8 10

region is relatively flat!

82

Training GANs: Two-Player Games

Minimax objective function:
min max [Emm log Do, (2) + Ep(z) log(1 — Do, (G, (2)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

10 [y, 108 Do, (2) + oy 081 — Do, (Go, (2))]

2. Instead: Gradient ascent on generator, different objective j — el DGO
r%a'x Ezwp(z) log(DOd(Gog (Z))) |
g /
Instead of minimizing likelihood of discriminator being correct, now High gradignt signal
maximize likelihood of discriminator being wrong. N
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice. o Eow d’Fadié‘)ﬁt signal

83

Training GANs: Two-Player Games

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(),..., (™} from data generating distribution
pda(a(m)-

e Update the discriminator by ascending its stochastic gradient:
m

Vou - 3 [108 Do, () + log(1 — Do, (Go, (=)

=1

end for
e Sample minibatch of m noise samples {z(*), ..., 2("™)} from noise prior p,(2).
e Update the generator by ascending its stochastic gradient (improved objective):

Vo, L 3 108(Do,(Go,)

=1

end for

84

Training GANs: Two-Player Games

Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

Followup work
(e.g. Wasserstein
GAN, BEGAN)
alleviates this
problem, better
stability!

for number of training iterations do

for[k sieps o
e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(*),...,z(™} from data generating distribution
pdala(m)-

e Update the discriminator by ascending its stochastic gradient:
m

Vou -3 [108 Do, () +log(1 — Dy, (Go,)]
=1

end for
e Sample minibatch of m noise samples {z(*), ..., 2(™)} from noise prior p,(2).
e Update the generator by ascending its stochastic gradient (improved objective):

m

Vo, - > 1og(Do,(Go, (7))

end for

85

Training GANs: Two-Player Games

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

Fake Images
(from generator)

]

| Real Images
e (from training set)

Generator Network

*

Random noise | z |

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

86

Generated Samples by GAN

Nearest neighbor from training set

Generated Samples by GAN

: "
-
. b p
» ” . - :
. - .+ Ve

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

88

GAN: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use ReLLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Samples from Convolutional GAN

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Samples from Convolutional GAN

Interpolating “& “ﬂ | 'M’ | ' Hﬁ F‘ﬂ? ?‘i B
between ,.... s | .
random | , ol
points in Iaten @rﬂ ﬁﬂv M "" J_d : J T‘
space |

-

-g_

|l;|‘ ! | a " l
Radford et al, = o "“_ g

ICLR 2016

2017: Explosion of GANs

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN,

Arjovsky 2017.
Improved Wasserstein
GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.

2017: Explosion of GANs

Text -> Image Synthesis

Sou rce->Target domau‘] transfer this small bird has a pink this magnificent fellow is

Input

breast and crown, and black almost all black with a red

Input primaries and secondaries. crest, and white cheek patch.

Output

Output

Reed et al. 2017,
Many GAN applications

- winter Yosemite

CycleGAN. Zhu et al. 2017. Pix2pix. Isola 2017. any xamples at
https://phillipi.github.io/pix2pix/

Brock et al., 2019

StyleGAN Series

StyleGAN v1 StyleGAN v2 StyleGAN v3

Evaluation Metric

- There is no objective function used when training
GAN generator models, meaning models must be
evaluated using the quality of the generated
synthetic images.

- Manual inspection of generated images is a good
starting point when getting started.

- Quantitative measures, such as the inception

score and the Frechet inception distance, can be
combined with aiialitative accacement to

96

Qualitative GAN Generator Evaluation

1. Nearest neighbors: to detect overfitting, generated samples are shown next to their
nearest neighbors in the training set

2. User study: in these experiments, participants are asked to distinguish generated
samples from real images in a short presentation time (e.g. 100 ms), i.e. real v.s fake; or,
participants are asked to rank models in terms of the fidelity of their generated images

3. Mode drop and mode collapse: Over datasets with known modes (e.g. a GMM or a

labeled dataset), modes are computed as by measuring the distances of generated data
to mode centers

97

Quantitative Measurement: FID

Fréchet Inception Distance (FID)

e FID embeds a set of generated samples into a feature space given by a specific layer of
Inception Net (or any CNN).

¢ Viewing the embedding layer as a continuous multivariate Gaussian, the mean and
covariance are estimated for both the generated data and the real data.

e The Fréchet distance between these two Gaussians (a.k.a Wasserstein-2 distance) is
then used to quantify the quality of generated samples

1
FID(r,g) = ||pr — Mg”g +Tr (Er + X, - 2(21“29)2)

Lower FID means smaller distances between synthetic and real data distributions.

98

0 - S
- R 5
a0
30¢ - < 8 5 3 . 30¢ b
O 5004 O .,
i s
15 15
50 4 /‘ 5 50
0+ -A// -~ - v 4 i B - - p 4. - - - J
0 1 2 3 c 1 2 3 1 2
disturbance level disturbance level disturbance level
3

E!E—!’E!ﬂ Eif) (e
!EBEH’E‘EEC ELC

disturbance level

FID measure is sensitive to image distortions. From upper left to lower right: Gaussian
noise, Gaussian blur, implanted black rectangles, swirled images, salt and pepper noise,
and CelebA dataset contaminated by ImageNet images.

GAN: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples
from the <
model

100

GAN: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic

EJ

GAN: Interpretable Vector Math

Radford et al, ICLR 2016

Samples
from the <
model

Average Z
vectors, do
arithmetic

GAN: Interpretable Vector Math

Radford et al,
Glasses man No glasses man No glasses woman LRI

Woman with glasses

103

The GAN Zoo

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALI - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN - Coupled Generative Adversarial Networks

.

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

* ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

« Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

104

Resources

My recommended reading list:
 WGAN

* WGAN-gp

* GAN landscape

* Progressive Growing GAN
e StyleGAN

Courses:
Stanford CS236: Deep Generative Models

105

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1807.04720v1
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://deepgenerativemodels.github.io

Summary: GAN

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can't solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANs for all kinds of applications

106

VAE vs. GAN

* VAE * GAN
* Blurry * More realistic
* Full coverage of the data * Only penalize fake and

therefore can suffer from

* Support approximate
mode collapse

inference
* Can’t infer probability

107

Diffusion Model

Variational Autoencoders

Figure 1 - Graphical Model for VAE

* Generative model and goal: qf”(%‘x)
po(T) :/pg(m\z)pg(z) 0* —arglenax]EmNp((2) [log pa(z|2; 6)] w
x: data; z: latent variable po(z|2)

* VAE solves it by sampling z from a new distribution g¢(z|z)
p(z) = /%(zlw)pe(x‘z)p(z)

q4(z|)

o)~ |7
O0880) > Bx. 0 g 2LEECD

The right-hand side is the evidence lower-bound(ELBO) L(9,)

Hierarchical Variational Autoencoders

* VAE with two latent variables, consider joint distribution p(z, 2, 2,)

p(a:)://pg(m,zl,zg)dzl,dzz

* Introduce a variational approximation to the true posterior and get

the ELBO:
B pg(ﬂ?,Zl,ZZ)
p(z) = // ¢ (21, 22]x) q¢((21,z2‘33))
Po\x, 21,29
=K., 2~gy(21,2|2
p(.’E) 1,224y (21,22|2) qQS(zl’Z?‘x)

1 2 Eay gy (,m0) |18~ —— 5
ng(;(j) > 1,22~qs (21,22|) [Og qd,(z1,22‘33)]

We are free to tactorize the inference and generative
models as we see fit

Hierarchical Variational Autoencoders

Figure 2 - A Hierarchical VAE

* Consider following model: ds(z1]z) qg(22]21)

p(x, 21, 22) = p(x|z1)p(21|22)p(22)

q(21, 22|x) = q(21]|2)q(22|21) po(z|z1) po(21]22)

 Substituting these factorizations into the ELBO, we get
L(0,¢) = Eq(z, 2 [2) [log p(2[21) — log q(21]x) + log p(21]22) — log g(22|21) + log p(22)]
This can be aIternatlver written as a “reconstruction term”,

and t_g | “logp(elz)] - Dis (a(ale) | plale)) — D (alzalz) || plz2)) d 1ES
corresponding prior:

Diffusion Probabilistic Models

* Consider the following model with a sequence of T variables:

Figure 3 - Diffusion Probabilistic Model

xo~p(x): observed data ooy

x,.7: latent variables @ @ @ @

p@(xt 1|$t

In fact, we can think of difflusibn models as a speuﬁc reallzatlon of a
hierarchical VAE. What —~ " -~ " - — *~"arence model, which
contains no learnable ,..(..tf.nf._lz-.- [@riza V1= B Bd) o that the final

latent distribution converges to a standard gaussian

Forward Diffusion Process

Forward diffusion process (fixed)

Data Noise

Forward Diffusion Process — Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define: @ = |[(1—B;) wehave: q(%¢|%¢) = N (%45 v/ a:Xg, (1 — &)I)) (Diffusion Kernel)

s=1

For sampling: X; = /&y Xg + /(1 — a¢) € where e~ N(0,1I)

B: values schedule (i.e., the noise schedule) is designed such that ar — 0 and q(xr|%x¢) ~ N (x7;0,I))

Forward Diffusion Process

What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel ¢(x¢|x() but what about ¢(x¢)?
Diffused Data Distributions
Data Noise

o) = [aboxi) = [atsoabelxgds

N) - — NN R t

Diffused Joint Input Diffusion

data dist. dist. data dist. kernel

alx;) alxy) alxs) q(x7)

a(Xo)

The diffusion kernel is Gaussian convolution.

We can sample X; ~ ¢(X¢) by first sampling X ~ ¢(X() and then sampling x; ~ ¢(x¢|X() (i.e., ancestral sampling).

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))
Diffused Data Distributions

Generation:
Sample x7 ~ N (x7;0,1)

Iteratively sample x;_1 ~ q(x¢_1|x¢) X X

N

True Denoising Dist.

a(Xo) a(xq) a(xz) a(xs) a(xr)

a(xe1x,) a(x11x,) q(x,]x3) a(x3]x,) q(%r.q [%7)

Can we approximate ¢(x;_1|x¢)? Yes, we can use a Normal distribution if 3; is small in each forward diffusion step.

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

A

Data Noise

. = pe(xor) = p(xp) | [Po(xe—1lx)
po(xi—1[xt) = N(x¢—1; ng(xt, t), o7 1) t—1
\ %
Trainable network
(U-net, Denoising Autoencoder)

g Iviodel — Variational upper

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

p(}(X(I:T)
Eqx — log; < Eyxo)g(xirlxo) |~ l0g ————<| =: L
1(u)[Og[)()(x())] - 1(x0)q(x1.7[x0) |: ©8 Q(XI:T|X0)]

Recall that x; = /ay xg+ /(1 — ay) €. Ho et al. NeurIPS 2020 parameterized the mean of denoising model via:

1 By
19(Xt, t) = —F—— ——c N
olset) = = (3= e)

Using a few simple arithmetic operations, we can write down the variational objective as:

. - 2
L = Eymq(xo) t~U{1,T}e~N(0.) [>\t||6 —eg(Var xo+ /1 —at €, 1)]

Ho et al. NeurIPS 2020 observe that simply setting A+ to 1 for all t works best in practice.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851.

Training and Sample Generation

Algorithm 1 Training Algorithm 2 Sampling
;: repeat (x0) 1: xp ~N(0,I)
© X0~ giXo 2: fort="T,...,1d
3: t ~ Uniform({1,...,T}) 3 2o NOD
4: €~ N(0,I)
5: Take gradient descent step on 4 Xt-1= \/L—t (xt & \}T—{‘GO (xt,t)) + 0tz
Vo ||e — €g(W/arxo + V1 — € t)||2 5: end for
6: until converged 6: return x,

Conditional Diffusion Model

Conditional generation is of great importance!

Text-to-image Spatial control

Input Canny edge

a teddy bear on a skateboard in times square Input human pose] Default

Conditional Diffusion Model

Almost the same as unconditional diffusion!

Forward
aCy, oxrlr) = | [aCeleed aGn iy =] [aGelrew)
t=1 t=1
Model €g (xt, 1) €g (X, 7, 1)

Loss IEt~U(O,T),xt~p(xt)[" € —€p (xt' t) "2] IE:xt,y~p(x,f,;y),l:~U(O,T) [" € — €y (xtt Ve t) "2]

Condition Schemas

1. Cross attention

|

MatMul

)
SoftMax
4
Mask (opt.)
)

Some

MatMuI

1 Q=Wy-0i(x),K=Wg-19(1), V=W 19()

* vy is the condition signal (e.g. text)

* Ty is a domain specific encoder (e.g. text en

@ _ * @;(x;) is the signal to be denoised

Signal to be ¢ondition

denoised

Condition Schemas

1. Cross attention

I Latent Space |) Conditioning)

_ Diffusion Process | emanti
" Ma
P Denoising U-Net €y 27 Text

‘ Repres
entations

T4

crossattention switch skip connection concat O

Stable Diffusion

W
N/

Input Canny edge

Input human pose Default

ControlNet

Condition Schemas

1. Cross attention
2. Simple concatenation (image to image tasks)

3. Conditional normalization

More applications: Text-to-Video

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city
sighage. She wears a black leather jacket, a long red dress, and black boots, and carries a black
purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is
damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

More applications: Image Editing

“Swap sunflowers with roses” “Add fireworks to the sky” “Replace the fruits with cake”

I W

More applications: Personalization

Input images wn the Acropolrs n a doghouse n a bucket aettang a hotrcut

Generated images

Ruiz et al., "DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation", CVPR 2023

More applications: Text-to-3D

Finetune stable diffusion to stimulate its awareness of camera poses

Input View (RGB)

Zero-1-to-3
»

B 8
Latent Diffusion Model \

Gaussian Noise Output VieW (RGB)

)]
a7
O
v
s
x
()]
T
n
C
O
-
(qe)
=
o
Q.
(qV)
Q
-
O
=

More applications: Text-to-Music

Diffusion
_’ _’

L]

Smooth soft R&B song with tender vocals, Bright and groovy song featuring the piano that
romantic piano and groovy, funky bass. sounds like an opening theme for a comedy series.

Diffusion
Models

< | & D\
(i 2l
N

~ | @ M/_

Summary of Computer Vision

« Compared to human vision, computer vision deals with the
following tasks:

» visual data acquisition (similar to human eyes but comes with
many more choices)

* image processing and feature extraction (mostly low-level)

« analyze local structures and then 3D reconstruct the original
scene (from mid-level to high-level)

» understanding (mostly high-level)
 generation (beyond the scope of human vision system)

Summary of Computer Vision

« Compared to human vision, computer vision deals with the
following tasks:

» visual data acquisition (similar to human eyes but comes with
many more choices)

* image processing and feature extraction (mostly low-level)

« analyze local structures and then 3D reconstruct the original
scene (from mid-level to high-level)

» understanding (mostly high-level)
 generation (beyond the scope of human vision system)

 and further serving embodied agents to make decisions and
take actions.

Please take Introduction to Embodied Al!

Introduction to Computer Vision

Thank Youl!

Embodied Perception and InteraCtion'tab SP

