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• Assignment 4 (Point Cloud Learning, Detection & RNN)
• Released on 5/24 
• Due on 6/8 11:59PM

Logistics



Logistics

• Final exam
• Time: 6/18
• Scope: all the lectures aKer midterm including today’s lecture.

• QuesPon types: similar to midterm exam.
• In English, all terms included in our slides won’t be explained.
• 1-page A4-size cheat sheet is allowed .



Generative Models

Some slides are borrowed from Stanford CS231N.
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Genera&ve Modeling

5



Generative Modeling
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Why Genera&ve Model?
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Genera&ve Modeling

8



• Y: labels, X: inputs

• Learn 𝑃(𝑌|𝑋)

Discriminative vs. Generative
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• X is all the variables

•𝑃(𝑋) or 𝑃(𝑋, 𝑌) (if 
labels are available)



Taxonomy of Genera&ve Model
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Diffusion Model



Taxonomy of Generative Model

11 Diffusion Model

Today we mainly discuss 
the most popular three



Fully Visible Belief Network (FVBN)
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Fully Visible Belief Network (FVBN)
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Fully Visible Belief Network (FVBN)
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Taxonomy of Generative Model
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PixelRNN and PixelCNN
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PixelRNN

PixelCNN



Variational Autoencoders 
(VAE)

Some slides are borrowed from Stanford CS231N.
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Taxonomy of Genera&ve Model
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Varia&onal Autoencoders
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Recap of Autoencoder
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Recap of Autoencoder
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Varia&onal Autoencoders
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Varia&onal Autoencoders
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Varia&onal Autoencoders
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Choose prior 𝑝(𝑧) to be simple, e.g. a standard 
normal distribution 𝒩(0, 𝐼). Reasonable for 
latent attributes, e.g. pose, how much smile.

Conditional 𝑝(𝑥|𝑧) is complex (generate 
image) => represent with a probabilistic neural 
network that is also a Gaussian.



Varia&onal Autoencoders
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𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧

How to train?



Varia&onal Autoencoders: Intractability
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Data likelihood: 𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧

Standard normal distribuFon 𝒩(0, 𝐼)



Variational Autoencoders: Intractability
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Note that this decoder 𝑝!(𝑥|𝑧) needs to be a 
probabilistic function, we will assume this 
probability distribution is also a Gaussian and 
then this decoder network only needs to predict 
𝜇"|$, Σ"|$.

Data likelihood: 𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧

Probabilistic decoder 𝑝!(𝑥|𝑧)



Variational Autoencoders: Intractability
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Data likelihood: 𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧



Variational Autoencoders: Intractability

29

Data likelihood: 𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧

𝑝!(𝑥) = 𝐄$∼&($)[𝑝!(𝑥|𝑧)]

𝜃

Can we use Monto Carlo estimation?

Unbiased but the variance is very high!



Variational Autoencoders: Intractability
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𝑝!(𝑥) =
𝑝!(𝑥, 𝑧)
𝑝!(𝑧|𝑥)

=
1

𝑝!(𝑧|𝑥)
𝑝(𝑧)𝑝!(𝑥|𝑧)

Computing integral is intractable 

Try another way:

Standard normal distribuFon 𝒩(0, 𝐼)

Data likelihood: 𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧



Variational Autoencoders: Intractability
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Data likelihood: Computing integral is intractable 

Try another way:

𝑝!(𝑥) =
𝑝!(𝑥, 𝑧)
𝑝!(𝑧|𝑥)

=
1

𝑝!(𝑧|𝑥)
𝑝(𝑧)𝑝!(𝑥|𝑧)

Probabilistic decoder

𝑝!(𝑥) = ∫ 𝑝(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧



Variational Autoencoders: Intractability
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Data likelihood: 𝑝!(𝑥) = ∫ 𝑝!(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧 Computing integral is intractable 

Try another way:

?

𝑝!(𝑥) =
𝑝!(𝑥, 𝑧)
𝑝!(𝑧|𝑥)

=
1

𝑝!(𝑧|𝑥)
𝑝(𝑧)𝑝!(𝑥|𝑧)



Variational Autoencoders: Intractability
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𝑝!(𝑥) =
𝑝!(𝑥, 𝑧)
𝑝!(𝑧|𝑥)

=
𝑝!(𝑧)𝑝!(𝑥|𝑧)
𝑝!(𝑧|𝑥)

Data likelihood: 𝑝!(𝑥) = ∫ 𝑝!(𝑧)𝑝!(𝑥|𝑧)𝑑𝑧 Compu<ng integral is intractable 

Try another way:

Unfortunately, all we know about this term is

𝑝!(𝑧|𝑥) =
𝑝!(𝑥, 𝑧)
𝑝!(𝑥)

=
𝑝(𝑧)𝑝!(𝑥|𝑧)

𝑝!(𝑥)



Varia&onal Autoencoders
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Can we learn a distribution 𝑞!(𝑧|𝑥) to approximate 
𝑝"(𝑧|𝑥)? 

The probabilistic encoder 
𝑞!(𝑧|𝑥) will also be a 
Gaussian distribution, which 
takes input 𝑥 and outputs 
𝜇#|% , Σ#|%.

ProbabilisFc encoder



How to Learn Variational Autoencoders
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•VAE is a probabilistic 
autoencoder.

•How to learn:
•Build a loss (negative log-

likelihood) ℒ = −log𝑝",!(𝑥)
•Minimize ℒ with respect to 
𝜙 and 𝜃 (or maximize 
log𝑝",!(𝑥))

•However, this term 
log𝑝" !(𝑥) is still intractable 

VariaAonal Autoencoder (VAE)



Variational Autoencoders

38

𝑝

𝑝

𝑝



Varia&onal Autoencoders

39

𝑝

𝑝

𝑝



Variational Autoencoders
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𝑝

𝑝

𝑝



ELBO
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This lower bound is widely referred as Evidence Lower BOund (ELBO).

𝑝

𝑝

𝑝



ELBO
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This lower bound is widely referred as Evidence Lower BOund (ELBO).

𝑝

𝑝

𝑝(𝑧))



Varia&onal Autoencoders

43

(ELBO)

𝑝(𝑧))



Varia&onal Autoencoders
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𝑝(𝑧)



Variational Autoencoders
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𝑝(𝑧)



Varia&onal Autoencoders
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𝑝(𝑧)



Variational Autoencoders
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𝑝(𝑧)



Varia&onal Autoencoders
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𝑝(𝑧)



Variational Autoencoders
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𝑝(𝑧)



Variational Autoencoders
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𝑝(𝑧)



Variational Autoencoders
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𝑝(𝑧)

Note that this term is sCll intractable, which we need 
to use Monte Carlo esCmaCon, which simply removes 
𝐸".



Variational Autoencoders
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𝑝(𝑧)

In pracCce, some implementaCons simply
set  Σ#|" = 𝐼, then this reconstrucCon term 
becomes MSE loss:

||𝑥(&) − 𝜇#|"||(



Variational Autoencoders
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Why called variational?

𝑝(𝑧)



Variation and Functional
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•Functional: mappings from a set of functions to the real 
numbers, where the independent variable is a function.

•Variations 𝛿: small changes in functions and functionals, to 
find maxima and minima (collectively called extrema) of 
functionals.

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)


Varia&on and Func&onal
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•FuncLonal: mappings from a set of funcLons to the real 
numbers, where the independent variable is a funcLon.

•VariaLons 𝛿: small changes in funcLons and funcLonals, to 
find maxima and minima (collecLvely called extrema) of 
funcLonals.

•Example: Find the shortest curve to connect two points, A 
and B, in a 2D plane.

•Independent variable: the funcLon of the curve 𝑓(𝑥, 𝑦)
•FuncLonal 𝑙: 𝑓(𝑥, 𝑦) → ℝ (length 𝑙 = ∫&

'𝑓(𝑥, 𝑦)𝑑𝑠)
•VariaLons: 𝛿𝑓 (don’t confuse with 

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)


Why Called Variational?
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•Training VAE can be seen as solving a varia%onal problem (to 
obtain the extrema of the funcLonal):

• ELBO is a funcLonal of 𝑞(𝑧|𝑥) and 𝑝(𝑥|𝑧).
•The variaLonal problem to solve: 𝑝

̂
, 𝑞
̂
= argmax(,)ELBO

•Solving this particular problem is called variational 
inference.

•This is a kind of approximate inference, since it can’t give 
your the true data log probability log𝑝(𝑥).

•Instead, it gives your the lower bound of log𝑝(𝑥), that is 
ELBO.



Variational Autoencoders
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•In reality, we use 𝜃, 𝜙 to parameterize 𝑝, 𝑞:
•The set of funcLons (or called varia%onal family): 
𝑞!(𝑧|𝑥), 𝑝"(𝑧|𝑥)

•Problem to solve:   𝜙
̂
, 𝜃
̂
= argmax!,"ELBO

•Becomes a known problem: to obtain the maximum of a 
funcLon (not a funcLonal anymore!)

•We can use gradient descent on 𝜙 and 𝜃.



Varia&onal Inference
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•From the perspecLve of classic staLsLcal learning, this 
approximate inference is done via solving a variaLonal problem 
(another mainstream method is MCMC sampling), so it is called 
variaLonal.

•From a modern perspecLve, training VAE is essenLally the 
same with training other neural networks.

•All neural network trainings can be seen as solving 
variaLonal problems!

•FuncLonal: your loss funcLon
•Independent variable: your neural network funcLon
•However nobody calls it in this way any more.



Varia%onal Autoencoders: Genera%ng Data
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Variational Autoencoders: Generating Data
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Varia%onal Autoencoders: Genera%ng Data
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Variational Autoencoders: Generating Data
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Varia%onal Autoencoders: Genera%ng Data
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Variational Autoencoders: Generating Data
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Varia%onal Autoencoders: Genera%ng Data
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Variational Autoencoders
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Genera6ve Adversarial 
Networks (GAN)

Some slides are borrowed from Stanford CS231N.
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Taxonomy of Genera&ve Models
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Mo#va#on
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Genera#ve Adversarial Networks
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Generative Adversarial Networks
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What loss funcCon should we 
use?



Genera#ve Adversarial Networks
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Generative Adversarial Networks
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games

83



Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Training GANs: Two-Player Games
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Generated Samples by GAN
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Generated Samples by GAN
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GAN: Convolutional Architectures
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Samples from Convolu&onal GAN
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Samples from Convolutional GAN
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2017: Explosion of GANs
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2017: Explosion of GANs
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2019: BigGAN
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StyleGAN Series
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StyleGAN v1 StyleGAN v2 StyleGAN v3



Evalua#on Metric
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• There is no objective function used when training 
GAN generator models, meaning models must be 
evaluated using the quality of the generated 
synthetic images.

• Manual inspection of generated images is a good 
starting point when getting started.

• Quantitative measures, such as the inception 
score and the Frechet inception distance, can be 
combined with qualitative assessment to 
provide a robust assessment of GAN models.



Qualitative GAN Generator Evaluation
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1. Nearest neighbors: to detect overfi@ng, generated samples are shown next to their 
nearest neighbors in the training set

2. User study: in these experiments, par<cipants are asked to dis<nguish generated 
samples from real images in a short presenta<on <me (e.g. 100 ms), i.e. real v.s fake; or, 
par<cipants are asked to rank models in terms of the fidelity of their generated images 

3. Mode drop and mode collapse: Over datasets with known modes (e.g. a GMM or a 
labeled dataset), modes are computed as by measuring the distances of generated data 
to mode centers 



Quan#ta#ve Measurement: FID
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Fréchet Incep<on Distance (FID) 

• FID embeds a set of generated samples into a feature space given by a specific layer of 
Incep<on Net (or any CNN). 

• Viewing the embedding layer as a con<nuous mul<variate Gaussian, the mean and 
covariance are es<mated for both the generated data and the real data. 

• The Fréchet distance between these two Gaussians (a.k.a Wasserstein-2 distance) is 
then used to quan<fy the quality of generated samples

Lower FID means smaller distances between synthe<c and real data distribu<ons.



FID Measurement
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FID measure is sensitive to image distortions. From upper left to lower right: Gaussian 
noise, Gaussian blur, implanted black rectangles, swirled images, salt and pepper noise, 
and CelebA dataset contaminated by ImageNet images. 



GAN: Interpretable Vector Math
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GAN: Interpretable Vector Math
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GAN: Interpretable Vector Math
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GAN: Interpretable Vector Math
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The GAN Zoo
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My recommended reading list:
• WGAN
• WGAN-gp
• GAN landscape
• Progressive Growing GAN
• StyleGAN

Courses:
Stanford CS236: Deep GeneraPve Models

Resources
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https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1807.04720v1
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://deepgenerativemodels.github.io


Summary: GAN
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• VAE
• Blurry
• Full coverage of the data
• Support approximate 

inference

VAE vs. GAN

107

• GAN
• More realisPc
• Only penalize fake and 

therefore can suffer from 
mode collapse
• Can’t infer probability



Diffusion Model



• GeneraPve model and goal:

𝑥: data;  𝑧: latent variable
• VAE solves it by sampling 𝑧 from a new distribuPon

The right-hand side is the evidence lower-bound(ELBO)

Varia%onal Autoencoders



• VAE with two latent variables, consider joint distribution

• Introduce a variational approximation to the true posterior and get 
the ELBO:

We are free to factorize the inference and generative 
models as we see fit

Hierarchical Variational Autoencoders



• Consider following model:

• SubsPtuPng these factorizaPons into the ELBO, we get

This can be alternaLvely wriXen as a “reconstrucLon term”, 
and the KL divergence between each inference layer and its 
corresponding prior:

Hierarchical Varia%onal Autoencoders



• Consider the following model with a sequence of T variables:
𝑥!~𝑝(𝑥): observed data
𝑥":$: latent variables

In fact, we can think of diffusion models as a specific realiza9on of a 
hierarchical VAE. What sets them apart is a unique inference model, which 
contains no learnable parameters and is constructed so that the final 
latent distribu9on           converges to a standard gaussian

Diffusion Probabilistic Models



Forward Diffusion Process



Forward Diffusion Process — Diffusion Kernel

Define: we have: (Diffusion Kernel)

For sampling: where



What happens to a distribution in the forward diffusion?

Forward Diffusion Process



Genera%ve Learning by Denoising



Reverse Denoising Process



Learning Denoising Model — Varia%onal upper 
bound

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851.



Training and Sample Generation



Condi%onal Diffusion Model

a teddy bear on a skateboard in >mes square

Conditional generation is of great importance!

Text-to-image Spa-al control



Condi%onal Diffusion Model

Almost the same as uncondiPonal diffusion!



Condition Schemas

1. Cross a4en%on

condi>onSignal to be 
denoised

• 𝑦 is the condition signal (e.g. text)

• 𝜏' is a domain specific encoder (e.g. text encoder)

• 𝜑((𝑥)) is the signal to be denoised

𝑄 = 𝑊( ' 𝜑) 𝑥* , 𝐾 = 𝑊+ ' 𝜏! 𝑦 , 𝑉 = 𝑊, ' 𝜏!(𝑦)



Condi%on Schemas

1. Cross a4en%on

Stable Diffusion ControlNet



Condi%on Schemas

1. Cross attention

2. Simple concatenation (image to image tasks)

3. Conditional normalization

4. …



More applications: Text-to-Video

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city 
signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black 
purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is 
damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.



More applica%ons: Image Edi%ng



More applica%ons: Personaliza%on

Ruiz et al., "DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation", CVPR 2023



More applica%ons: Text-to-3D

Finetune stable diffusion to s"mulate its awareness of camera poses



More applications: Text-to-3D



More applications: Text-to-Music

Smooth soft R&B song with tender vocals, 
romantic piano and groovy, funky bass.

Bright and groovy song featuring the piano that 
sounds like an opening theme for a comedy series.



Summary



• Compared to human vision, computer vision deals with the 
following tasks: 

• visual data acquisition (similar to human eyes but comes with 
many more choices) 

• image processing and feature extraction (mostly low-level) 

• analyze local structures and then 3D reconstruct the original 
scene (from mid-level to high-level) 

• understanding (mostly high-level) 

• generation (beyond the scope of human vision system)  

• and further serving embodied agents to make decisions and 
take actions.

 X

Summary of Computer Vision



• Compared to human vision, computer vision deals with the 
following tasks: 

• visual data acquisition (similar to human eyes but comes with 
many more choices) 

• image processing and feature extraction (mostly low-level) 

• analyze local structures and then 3D reconstruct the original 
scene (from mid-level to high-level) 

• understanding (mostly high-level) 

• generation (beyond the scope of human vision system)  

• and further serving embodied agents to make decisions and 
take actions.

 X

Summary of Computer Vision

Please take Introduction to Embodied AI!



Embodied Perception and InteraCtion Lab Spring 2025

Thank You!

Introduction to Computer Vision


