
Embodied Perception and InteraCtion Lab Spring 2025

Prof. He Wang

Introduction to Computer Vision

Lecture 14
Self-Attention & Transformer

• Assignment 4 (Point Cloud Learning, Detection & RNN)
• Released on 5/24
• Due on 6/8 11:59PM

Logistics

Attention + Transformer

The slides are borrowed and modified from Stanford CS 231N.

Today: Attention +Transformers

Attention: A new primitive that
operates on sets of vectors

Transformer: A neural
network architecture that
uses attention everywhere

Transformers are used
everywhere today!

But they developed as
an offshoot of RNNs
so let’s start there

s1h1 h2 h3 s0

[START]

y0

y1

h4

vediamo

c

Decoder: st = gU(yt-1, st-1, c)Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

From final hidden state predict:
Encoder: ht = fW (xt, ht-1) Initial decoder state s0

Context vector c (often c=hT)

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

we see the sky

x1 x2 x3 x4

Recap: Sequence to Sequence with RNNs

s1h1 h2 h3 s0 s2

[START]

y0

y1 y2

h4

y1 y3

s3 s4

y3 y4

[STOP]

c

Decoder: st = gU(yt-1, st-1, c)

Recap: Sequence to Sequence with RNNs

Problem: Input sequence
bottlenecks through fixed
sized c. What if T=1000?

cielovediamo il

vediamo il cielo

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

we see the sky

x1 x2 x3 x4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

From final hidden state predict:
Encoder: ht = fW (xt, ht-1) Initial decoder state s0

Context vector c (often c=hT)

y1 y2

s1h1 h2 h3 s0 s2

[START]

y0

y1 y2

h4

y1 y3

s3 s4

y3 y4

[STOP]

c

Decoder: st = gU(yt-1, st-1, c)

Solution: Look back at the
whole input sequence on
each step of the output

cielovediamo il

vediamo il cielo

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

we see the sky

x1 x2 x3 x4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

From final hidden state predict:
Encoder: ht = fW (xt, ht-1) Initial decoder state s0

Context vector c (often c=hT)

y2

Recap: Sequence to Sequence with RNNs

h1 h2 h3 s0h4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

Encoder: ht = f w(xt , ht-1)

Sequence to Sequence with RNNs and Attention

we see the sky

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

h1 h2 h3 s0h4

e11 e12 e13 e14

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is a Linear Layer)

Sequence to Sequence with RNNs and Attention

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

h1 h2 h3 s0h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

0 < at,i < 1

Sequence to Sequence with RNNs and Attention

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is a Linear Layer)

Normalize alignment scores
to get attention weights

∑ ia t,i =1

vediamo

h1 h2 h3 s0h4

e11 e12 e13 e14

a11 a12 a13 a14

softmax

c1

+ s1

y0

y1

[START]

Sequence to Sequence with RNNs and Attention

From final hidden state:
Initial decoder state s0

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fat t is a Linear Layer)

vediamo

Compute context vector as
weighted sum of hidden
states
ct = ∑iat,ihi

Use context vector in
decoder: st = gU(yt-1, st-1, ct)

All differentiable! No
supervision on attention
weights. Backprop
through everything

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

0 < at,i < 1 ∑ ia t,i =1

Normalize alignment scores
to get attention weights

Intuition: Context
vector attends to the
relevant part of the
input sequence
“vediamo” = “we see”
so maybe a11=a12=0.45,
a13 = a 14 = 0.05

h1 h2 h3 s0h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

a21 a22 a23 a24

softmax

+

Repeat: Use s1to compute
new context vector c2

Sequence to Sequence with RNNs and Attention

Compute new alignment
scores e2,1and attention
weights a2,I

vediamo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

h1 h2 h3 s0h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Sequence to Sequence with RNNs and Attention

s2

y2

il

y1

Use context vector
in decoder: st =
gU(yt-1, st-1, c t)

vediamo

vediamo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Repeat: Use s1to compute
new context vector c2

h1 h2 h3 s0h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Sequence to Sequence with RNNs and Attention

s2

y2

y1

Intuition: Context vector
attends to the relevant
part of the input sequence
“il” = “the”
so maybe a21=a22=0.05,
a24=0.1, a23=0.8

ilvediamo

vediamo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Use context vector
in decoder: st =
gU(yt-1, st-1, c t)

Repeat: Use s1to compute
new context vector c2

h1 h2 h3 s0h4 s1 s2

[START]

y0

s3 s4

y1 y2 y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through singlevector
- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

Sequence to Sequence with RNNs and Attention

cielovediamo il

vediamo il cielo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Example: English to
French translation Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

h1 h2 h3 h4

e21 e22 e23 e24

softmax

a21 a22 a23 a24

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Example: English to
French translation

Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été
signé en août 1992.”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

Visualize attention weights a t,i

Sequence to Sequence with RNNs and Attention

Diagonal attention
means words

correspond in order

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été
signé en août 1992.”

Example: English to
French translation

Diagonal attention
means words

correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

Visualize attention weights a t,i

Diagonal attention
means words

correspond in order

Sequence to Sequence with RNNs and Attention

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été
signé en août 1992.”

Example: English to
French translation

Attention figures
out other word

orders

Diagonal attention
means words

correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

h1 h2 h3 s0

x1 x2 x3 x4

h4

y0

s1 s4

y1 y2 y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Sequence to Sequence with RNNs and Attention

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

There’s a general
operator hiding here:

vediamo il cielo

we see the sky
[START] vediamo il cielo

s3s2

h1 h2 h3 s0h4 s1 s2

y0

s3 s4

y1 y2 y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Sequence to Sequence with RNNs and Attention
Query vectors (decoder RNN states) and
data vectors (encoder RNN states)
get transformed to
output vectors (Context states).
Each query attends to all data vectors and
gives one output vector

[START] vediamo il cielo

x1 x2 x3 x4

we see the sky

There’s a general
operator hiding here:

vediamo il cielo

Attention Layer
Inputs:
Query vector: q[DQ]

Attention Layer

Data vectors: X[NX x DX]

Inputs:
Query vector: q[DQ]

Attention Layer

Computation:
Similarities: e [NX] ei = fatt(q, Xi)

Data vectors: X[NX x DX]

Inputs:
Query vector: q[DQ]

Attention Layer

Computation:
Similarities: e [NX] ei = fatt(q, Xi)
Attention weights: a = softmax(e) [NX]

Data vectors: X[NX x DX]

Inputs:
Query vector: q[DQ]

Attention Layer

Output vector: y = ∑ i a i Xi [[D x]

Computation:
Similarities: e [NX] ei = fatt(q, Xi)
Attention weights: a = softmax(e) [NX]

Inputs:
Query vector: q[DQ]
Data vectors: X[NX x DX]

Attention Layer

Let’s generalize this!
Output vector: y = ∑ i a i Xi [[D x]

Computation:
Similarities: e [NX] ei = fatt(q, Xi)
Attention weights: a = softmax(e) [NX]

Inputs:
Query vector: q[DQ]
Data vectors: X[NX x DX]

Computation:
Similarities: e [NX] ei = q · Xi
Attention weights: a = softmax(e) [NX]

Attention Layer

Changes
- Use dot product for similarity

Output vector: y = ∑ i a i Xi [[D x]

Inputs:
Query vector: q[DX]
Data vectors: X[NX x DX]

Output vector: y = ∑ i a i Xi [[D x]

Inputs:
Query vector: q[DX]
Data vectors: X[NX x DX]

Attention Layer

Changes
- Use scaled dot product for similarity

Computation:
Similarities: e [NX] ei = q · Xi / DX

Attention weights: a = softmax(e) [NX]

Attention Layer

Output vector: y = ∑ i a i Xi [[D x]

Inputs:
Query vector: q[DX]
Data vectors: X[NX x DX]

Changes
- Use scaled dot product for similarity

Computation:
Similarities: e [NX] ei = q · Xi / DX

Attention weights: a = softmax(e) [NX]

Large similarities will cause softmax to
saturate and give vanishing gradients
Recall a · b = |a||b| cos(angle)
Suppose that a and b are constant
vectors of dimension D
Then |a| = ∑𝑎! "/!=a 𝐷

Attention Layer
Inputs:
Query vector: Q [NQ x DX]
Data vectors: X[NX x DX]

Computation:
Similarities: E = QXT / 𝐷𝑋 [NQ x NX]

Eij = Qi·Xj / 𝐷𝑋
Attention weights: A = softmax(E, dim=1) [NQ x NX]
Output vector: Y = AX [NQx DX] Changes

- Use scaled dot product for similarity
- Multiple query vectors

Yi = ∑jAijXj

Attention Layer
Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]
Key matrix: WK[DX x DQ]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ]
Values: V = XWV [NX x DV]
Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]
Output vector: Y = AV [NQ x DV]

Changes
- Use scaled dot product for similarity
- Multiple query vectors
- Separate key and value

Yi = ∑jAijVj

Computation:
Keys: K = XWK [NX x DQ]
Values: V = XWV [NX x DV]
Similarities: E = QKT / 𝐷𝑄[NQx NX]

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Attention Layer
Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]
Key matrix: WK[DX x DQ]
Value matrix: WV [DXx DV]

X1

X2

X3

Q2 Q3 Q4Q1

Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]
Key matrix: WK[DX x DQ]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK
Values: V = XWV

[NX x DQ]
[NX x DV]

Similarities: E = QKT / 𝐷𝑄[NQx NX]
Ei j = Qi · Kj / 𝐷𝑄

Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

X1

X2

X3

K1

K2

K3

V1

V2

V3

Q2 Q3 Q4Q1

Attention Layer

Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

V1

V2

V3

Q2 Q3 Q4Q1

Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]
Key matrix: WK[DX x DQ]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK
Values: V = XWV

[NX x DQ]
[NX x DV]

Similarities: E = QKT / 𝐷𝑄[NQx NX]
Ei j = Qi · Kj / 𝐷𝑄

Attention Layer

Key matrix: W [D x D]

Attention Layer
Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]

K X Q

Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ]
Values: V = XWV [NXx DV]
Similarities: E = QKT / 𝐷 [N x N]𝑄 Q X

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Softmax()

X1 K1

X2 K2

X3 K3

E1,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E2,1 E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Softmax normalizes each
column: each query predicts
a distribution over the keys

Q2 Q3 Q4Q1

Attention Layer
Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]

K X QKey matrix: W [D x D]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ]
Values: V = XWV [NXx DV]
Similarities: E = QKT / 𝐷 [N x N]𝑄 Q X

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Softmax()

Q1

X1 K1

X2 K2

X3 K3

E1,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E2,1 E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product(), Sum()

Q2 Q3 Q4

Y1 Y2 Y3 Y4Each output is a linear
combination of all values,
weighted by attention weights

Cross-Attention Layer
Inputs:
Query vector: Q[NQ x DQ]
Data vectors: X[NX x DX]

K X QKey matrix: W [D x D]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ]
Values: V = XWV [NXx DV]
Similarities: E = QKT / 𝐷 [N x N]𝑄 Q X

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Each query produces
one output, which isa
mix of information in
the data vectors

Softmax()

Q1

X1 K1

X2 K2

X3 K3

E1,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E2,1 E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product(), Sum()

Q2 Q3 Q4

Y1 Y2 Y3 Y4

Inputs:
Input vectors: X [N x D]in
Key matrix: WK[Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ[Dinx Dout]

Computation:
Queries: Q = XW Q [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / 𝐷 [N x N]𝑄

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces
one output, which is
a mix of information
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

A1,3 A2,3 A3,3

Softmax()

V1

V2

V3

Product(), Sum()

Y1 Y2 Y3

Shapes get a little simpler:
- N input vectors, each Din
- Almostalways D = D = DQ V out

Q1 Q2 Q3

X1 X2 X3

Inputs:
Input vectors: X[N x Din]
Key matrix: WK[Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ[Dinx Dout]

Computation:
Queries: Q = XW Q [N x Dout]
Keys:
Values:

K = XWK [N x Dout]
V = XWV [N x Dout]

Similarities: E = QKT / 𝐷𝑄[N x N]
Ei j = Qi · Kj / 𝐷𝑄

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces
one output, which is
a mix of information
from all inputs

K1

K2

V1

V2

From each input:
compute a query,
key, and value vector

Often fused to onematmul:

[Q K V] = X[W W W]Q K V
[N x 3Dout] = [N x Din] [Din x 3Dout]

Q1 Q2 Q3

X1 X2 X3

V3

K3

Inputs:
Input vectors: X[N x Din]
Key matrix: WK[Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ[Dinx Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / 𝐷 [N x N]𝑄

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces
one output, which is
a mix of information
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

V1

V2

V3

Compute similarity
between each query
and each key

Q1 Q2 Q3

X1 X2 X3

Inputs:
Input vectors: X [N x D]in
Key matrix: WK[Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ[Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / 𝐷 [N x N]𝑄

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces
one output, which is
a mix of information
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,2 A2,2 A3,2

A1,3 A2,3 A3,3

Softmax()

A1,1 A2,1 A3,1V1

V2

V3

Normalize over each column: each query
computes a distribution over keys

Q1 Q2 Q3

X1 X2 X3

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Each input produces
one output, which is
a mix of information
from all inputs

Self-Attention Layer
Compute output vectors as linear
combinations of value vectors

Yi= ∑jAijVj

Y1 Y2 Y3

Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V1

A2,2

K1

K2

K3

A3,3

A3,2V2

V3

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1

Product(), Sum()

Softmax()

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer
Consider permuting inputs:

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Self-Attention Layer
Product(), Sum()

Softmax()

V3

K3

K1

K2

V1

V2

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but
permuted

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer
Product(), Sum()

E1,1

Softmax()

E2,2

E2,1

E3,3

E3,1

E3,2

V3

K3

K1

K2

V1

V2

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but
permuted

Attention weights are the
same but permuted

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer
Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V3

A2,2

K3

K1

K2

A3,3

A3,2V1

V2

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but
permuted

Attention weights are the
same but permuted

Outputs are the same but
permuted

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer Y1 Y2 Y3

Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V3

A2,2

K3

K1

K2

A3,3

A3,2V1

V2

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]

Self-Attention is
permutation equivariant:
F(σ(X)) = σ(F(X))

This means that Self-Attention
works on sets of vectors

Similarities: E = QKT / OQ [N x N]
Eij = Qi ·Kj / OQ

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer Y1 Y2 Y3

Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V3

A2,2

K3

K1

K2

A3,3

A3,2V1

V2

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Problem: Self-Attention
does not know the order of
the sequence

Self-Attention Layer Y1 Y2 Y3

Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V1

A2,2

K1

K2

K3

A3,3

A3,2V2

V3

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]

Problem: Self-Attention
does not know the order of
the sequence

Solution: Add positional
encoding to each input; this
is a vector that is a fixed
function of the index

Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer Y1 Y2 Y3

Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V1

A2,2

K1

K2

K3

A3,3

A3,2V2

V3

X3
E(3)

X2

E(2)

X1
E(1)

Q2 Q3Q1

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Q3

X3

Q2

X2

Q1

X1

Masked Self-Attention Layer
Don’t let vectors “ look ahead” in the sequence Y1 Y2 Y3

Product(), Sum()

A1,1

E1,1

Softmax()

E2,2

A2, 1

E2,1

-∞ E3,3

E3,1

0

A3, 1

E3,2

0

V1

A2,2

K1

K2

K3

0 A3,3

A3,2

-∞

-∞

V2

V3

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Used for language modeling
where you want to predict the
next word

Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Masked Self-Attention Layer
Don’t let vectors “ look ahead” in the sequence

Product(), Sum()

Attention is very

is very cool

A1,1

E1,1

Q2

Softmax()

E2,2

A2, 1

E2,1

-∞ E3,3

Q3

E3,1

0

A3, 1

E3,2

0

V1

A2,2

K1

K2

K3

0 A3,3

Q1

A3,2

-∞

-∞

V2

V3

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X2 X3X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

H = 3 independent
self-attention layers
(called heads), each
with their own weights

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X2 X3X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

Yi AijVj

Stack up the H
independent outputs
for each input X

H = 3 independent
self-attention layers
(called heads), each
with their own weights

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

Y1, 1

Y1,2

Y1,3

Y2, 1

Y2,2

Y2,3

Y3, 1

Y3,2

Y3,3

X2 X3X1

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values: V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Output projection fuses
data from each head

Stack up the H
independent outputs
for each input X

H = 3 independent
self-attention layers
(called heads), each
with their own weights

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

O1

Y1, 1

Y1,2

Y1,3

O2

Y2, 1

Y2,2

Y2,3

O3

Y3, 1

Y3,2

Y3,3

X2 X3X1

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Each of the H parallel
layers use a qkv dim of
DH = “ head dim”

Usually DH = D / H, so
inputs and outputs have
the same dimension

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

O1

Y1, 1

Y1,2

Y1,3

O2

Y2, 1

Y2,2

Y2,3

O3

Y3, 1

Y3,2

Y3,3

X2 X3X1

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

In practice, compute
all H heads in parallel
using batched matrix
multiply operations.

Used everywhere in
practice.

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

O1

Y1, 1

Y1,2

Y1,3

O2

Y2, 1

Y2,2

Y2,3

O3

Y3, 1

Y3,2

Y3,3

X2 X3X1

Self-Attention is Four Matrix Multiplies!
Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]

Self-Attention is Four Matrix Multiplies!

Similarities: E = QKT / 𝑂$ [H x N x N]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!

Q: How much compute does this take
as the number of vectors N increases?

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]

shape [H x N x DH]
2. QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]
3. V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of

Self-Attention is Four Matrix Multiplies!

Q: How much compute does this take
as the number of vectors N increases?
A: O(N2)

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

Self-Attention is Four Matrix Multiplies!

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Q: How much memory does this take
as the number of vectors N increases?

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Self-Attention is Four Matrix Multiplies!

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Q: How much memory does this take
as the number of vectors N increases?
A: O(N2)

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Self-Attention is Four Matrix Multiplies!

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Q: How much memory does this take
as the number of vectors N increases?
A: O(N2)

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

If N=100K, H=64 then
HxNxN attention weights
take 1.192 TB! GPUs don’t
have that much memory…

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values: V = XWV [H x N x DH]

2. QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3. V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

Flash Attention
algorithm computes
2+3 at the same time
without storing the
full attention matrix!

Q: How much memory does this take
as the number of vectors N increases?
A: O(N) with Flash Attention

4. Output Projection
[N x HDH] [HDH x D] => [N x D]

If N=100K, H=64 then
HxNxN attention weights
take 1.192 TB! GPUs don’t
have that much memory…

1. QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Dao et al, “ FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness ” , 202 2

Self-Attention is Four Matrix Multiplies!

Makes large N
possible

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

x2

y2

x1 x3 x4

y1 y3 y4

Three Ways of Processing Sequences
Recurrent Neural Network

Recurrent Neural Network Convolution

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

x2

y2

x1 x2 x3 x4

y1 y2 y3 y4

x1 x3 x4

y1 y3 y4

Three Ways of Processing Sequences

Works on sets of vectors

(+) Great for long sequences; each
output depends directly on all inputs
(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N)
memory for sequence of length N

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

Three Ways of Processing Sequences

Softmax(↑)

E1 ,3

E1 ,2

E2 ,1

E2 ,2

E2 ,3 E3 ,3

E3 ,2

E3 ,1

V3

V2

V1

Q3Q1 Q2

K1

K2

K3

y3

x3

Recurrent Neural Network

x2

y2

x4x1 x2

y2 y4y1

x1 x3 x4

y1 y3 y4

Self-AttentionConvolution
Product(→),目Sum(↑)

E1 ,1

A2 ,3

A2 ,1

A1 ,3

A1 ,1

A3 ,2

A3 ,1

A3 ,3

A1 ,2 A2 ,2

Y2 Y3Y1

X3X2X1

Works on sets of vectors

(+) Great for long sequences; each
output depends directly on all inputs
(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N)
memory for sequence of length N

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

Three Ways of Processing Sequences

Softmax(↑)

E1 ,3

E1 ,2

E2 ,1

E2 ,2

E2 ,3 E3 ,3

E3 ,2

E3 ,1

V3

V2

V1

Q3Q1 Q2

K1

K2

K3

y3

x3

Recurrent Neural Network

x2

y2

x4x1 x2

y2 y4y1

x1 x3 x4

y1 y3 y4

Self-AttentionConvolution
Product(→),目Sum(↑)

E1 ,1

A2 ,3

A2 ,1

A1 ,3

A1 ,1

A3 ,2

A3 ,1

A3 ,3

A1 ,2 A2 ,2

Y2 Y3Y1

X3X2X1

Attention is All You Need
Vaswani et al, NeurIPS 2017

Transformer Block

Input: Set of vectors x

x2 x3 x4x1

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Self-Attention

x2 x3 x4x1

The Transformer
Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

All vectors interact through
(multiheaded) Self-Attention

+
Self-Attention

x2 x3 x4x1

The Transformer
Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Recall Layer Normalization (Baet al, 2016):
Given h1, …, h N (Shape: D)
scale: Y						 (Shape: D)
shift: β	 (Shape: D)
𝜇! = ∑" ℎ!," /𝐷 (scalar)

𝛿! = ∑" ℎ!," − 𝜇!
$
/𝐷

%/$
(scalar)

𝑧! = ℎ! − 𝜇! /𝛿!
𝑦! = 𝛾∗𝑧! + 𝛽

Layer Normalization
+

Self-Attention

x2 x3 x4x1

The Transformer
Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Layer normalization
normalizes all vectors

Usually a two-layer MLP;
classic setup is
D => 4D => D

Also sometimes called FFN
(Feed-Forward Network)

MLP MLP MLP MLP

Layer Normalization
+

Self-Attention

x2 x3 x4x1

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Layer normalization
normalizes all vectors

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformer Block

Input: Set of vectors x

The Transformer

MLP MLP MLP MLP

Layer Normalization
+

+

Self-Attention

x2 x3 x4x1

Residual connection

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Layer normalization
normalizes all vectors

MLP independently
on each vector

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformer Block

Input: Set of vectors x

The Transformer

Another Layer Norm

y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1

Residual connection

Residual connection

All vectors interact through
(multiheaded) Self-Attention

Layer normalization
normalizes all vectors

MLP independently
on each vector

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

The Transformer
y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

A Transformer is just a stack of
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

A Transformer is just a stack of
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

A Transformer is just a stack of
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]
48 blocks, D=1600, H=25, N=1024
1.5B params

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]
48 blocks, D=1600, H=25, N=1024
1.5B params

GPT-3: [Brown etal, 2020]
96 blocks, D=12288, H=96, N=2048
175B params

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Embedding Matrix
[V x D]

Attention is all you

Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

Embedding Matrix
[V x D]

Attention is all you

Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of
shape [D x V] to project each D-dim
vector to a V-dim vector of scores for
each element of the vocabulary.

Projection Matrix
[D x V]

Embedding Matrix
[V x D]

Attention is all you

is all you need

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of
shape [D x V] to project each D-dim
vector to a V-dim vector of scores for
each element of the vocabulary.

Train to predict next token using softmax
+ cross-entropy loss

Transformers for Language Modeling (LLM)

Projection Matrix
[D x V]

Embedding Matrix
[V x D]

Attention is all you

is all you need

Input image:
e.g. 224x224x3

Vision Transformers (ViT)

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Vision Transformers (ViT)

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Vision Transformers (ViT)

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Vision Transformers (ViT)

Q: Any other way to
describe this operation?

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Vision Transformers (ViT)

Q: Any other way to
describe this operation?

A: 16x16 conv with stride
16, 3 input channels, D
output channels

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Vision Transformers (ViT)

Break into patches Flatten and apply a linear
transform 768 => De.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

D-dim vector perpatch
are the input vectors to

the Transformer

Pooling

Vision Transformers (ViT)

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

D-dim vector perpatch
are the input vectors to

the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Pooling

Vision Transformers (ViT)

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Don’t use any
masking; each

image patch can
look at all other
image patches

D-dim vector perpatch
are the input vectors to

the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Pooling

Vision Transformers (ViT)

Don’t use any
masking; each

image patch can
look at all other
image patches

D-dim vector perpatch
are the input vectors to

the Transformer

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Transformer
gives an output
vector per patch

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Pooling

Vision Transformers (ViT) Average pool NxD vectors to
1xD, apply a linear layer

D=>C to predict class scores

Flatten and apply a linear
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Don’t use any
masking; each

image patch can
look at all other
image patches

D-dim vector perpatch
are the input vectors to

the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Transformer
gives an output
vector per patchPooling

Tweaking Transformers
The Transformer architecture has not
changed much since 2017.

But a few changes have become common:

y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1

Pre-Norm Transformer

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Layer normalization is outside
the residual connections

Kind of weird, the model can’t
actually learn the identify function

y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1

Pre-Norm Transformer

Layer normalization is outside
the residual connections

Kind of weird, the model can’t
actually learn the identify function

Solution: Move layer
normalization before the Self-
Attention and MLP, inside the
residual connections. Training is
more stable.

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

Layer Normalization

Layer Normalization

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

RMSNorm
Replace Layer Normalization
with Root-Mean-Square
Normalization (RMSNorm)

Input: x [shape D]
Output: y [shape D]
Weight: 𝛾[shape D]

Zhang and Sennrich, “Root Mean Square Layer Normalization”,NeurIPS 2019

Training is a bit more stable

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm𝑦% =
&"

'() &
∗ 𝛾%

𝑅𝑀𝑆 𝑥 = 𝜀 +
1
𝑁
1

%*"

+
𝑥%!

SwiGLU MLP

Shazeer, “GLU Variants Improve Transformers”, 2020

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Classic MLP:

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% [𝐷x4𝐷]

𝑊$ [4𝐷x𝐷]
Output: 𝑌 =𝛿(𝑋𝑊%)𝑊$ [𝑁 x𝐷]

SwiGLU MLP
Classic MLP:

SwiGLU MLP:

Setting H = 8D/3keeps
same total params

Shazeer, “GLU Variants Improve Transformers”, 2020

𝑌 = 𝛿 𝑋𝑊% ⨀𝑋𝑊& 𝑊'

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% [𝐷x4𝐷]

𝑊$ [4𝐷x𝐷]
Output: 𝑌 =𝛿(𝑋𝑊%)𝑊$ [𝑁 x𝐷]

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% ,𝑊$[𝐷x𝐻]

𝑊([𝐷x𝐻]
Output:

SwiGLU MLP
Classic MLP:

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% [𝐷x4𝐷]

𝑊$ [4𝐷x𝐷]
Output: 𝑌 =𝛿(𝑋𝑊%)𝑊$ [𝑁 x𝐷]

SwiGLU MLP: We offer no explanation as
to why these architectures
seem to work; we attribute
their success, as all else,
to divine benevolence.

𝑌 = 𝛿 𝑋𝑊% ⨀𝑋𝑊& 𝑊'

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% ,𝑊$[𝐷x𝐻]

𝑊([𝐷x𝐻]
Output:

Setting H = 8D/3keeps
same total params

Shazeer, “GLU Variants Improve Transformers”, 2020

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Mixture of Experts (MoE)

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017

Learn E separate sets of MLP weights in
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]
W2: [4D x D] => [E x 4D x D]

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Mixture of Experts (MoE)

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017

Learn E separate sets of MLP weights in
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]
W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the
experts. These are the activeexperts.

Increases params by E,
But only increases compute by A

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Mixture of Experts (MoE)
Learn E separate sets of MLP weights in
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]
W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the
experts. These are the activeexperts.

Increases params by E,
But only increases compute by A

All of the biggest LLMs today (e.g.
GPT4o, GPT4.5, Claude 3.7, Gemini 2.5
Pro, etc) almost certainly use MoE and
have > 1T params; but they don’tpublish
details anymore

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Tweaking Transformers
The Transformer architecture has not
changed much since 2017.

But a few changes have become common:
- Pre-Norm: Move normalization inside residual
- RMSNorm: Different normalizationlayer
- SwiGLU: Different MLP architecture
- Mixture of Experts (MoE): Learn E

different MLPs, use A < E of themper token.
Massively increase params, modest
increase to compute cost.

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Summary: Attention + Transformers

Attention: A new primitive that
operates on sets of vectors

Transformer: A neural
network architecture that
uses attention everywhere

Transformers are the
backbone of all large
AI models today!

Used for language,
vision, speech, …

Large Multi-modal Models

Large Multi-modal Models (BLIP)

Large Multi-modal Models (BLIP)

• Learning Framework of BLIP

Large Multi-modal Models (BLIP)

Large Multi-modal Models (BLIP-2)

• Pretraining Pipeline

Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language
models." arXiv preprint arXiv:2301.12597 (2023).

Large Multi-modal Models (BLIP-2)
• Pretraining Pipeline
Model architecture of Q-Former and BLIP-2’s first-stage vision-language representation learning objectives.

The self-attention masking
strategy for each objective to
control query-text interaction.

Large Multi-modal Models (BLIP-2)
• Results on Zero-shot Vision-Language Models
Overview of BLIP-2 results on various zero-shot vision-language tasks.

Comparison with state-of-the-art methods on zero-shot visual question answering.

Large Multi-modal Models (InstructBLIP)

• Model Architecture

Dai, Wenliang, et al. "InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning." arXiv
preprint arXiv:2305.06500 (2023).

Large Multi-modal Models (InstructBLIP)

• Comparison between BLIP-2 and InstructBLIP

Large Multi-modal Models (Frozen)

• Model Architecture

Tsimpoukelli, Maria, et al. "Multimodal few-shot learning with frozen language models." Advances in Neural Information
Processing Systems 34 (2021): 200-212.

Large Multi-modal Models (Frozen)

• Inference-time Interface

Large Multi-modal Models (Frozen)
• Experiment Results

Large Multi-modal Models (Flamingo)

• Architecture Overview

Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." Advances in Neural Information
Processing Systems 35 (2022): 23716-23736.

Large Multi-modal Models (Flamingo)

• GATED XATTN-DENSE layers

Large Multi-modal Models (Flamingo)

• Experiment Results

Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 15,
Generative Model

Introduction to Computer Vision

