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Lecture 14
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• Assignment 4 (Point Cloud Learning, Detection & RNN)
• Released on 5/24 
• Due on 6/8 11:59PM

Logistics



Attention + Transformer

The slides are borrowed and modified from Stanford CS 231N.



Today: Attention +Transformers

Attention: A new primitive that  
operates on sets of vectors

Transformer: A neural  
network architecture that  
uses attention everywhere

Transformers are used  
everywhere today!

But they developed as  
an offshoot of RNNs  
so let’s start there
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Decoder: st = gU(yt-1, st-1, c)Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

From final hidden state predict:
Encoder: ht = fW (xt, ht-1) Initial decoder state s0

Context vector c (often c=hT)

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

we see the sky

x1 x2 x3 x4

Recap: Sequence to Sequence with RNNs



s1h1 h2 h3 s0 s2

[START]

y0

y1 y2

h4

y1 y3

s3 s4

y3 y4

[STOP]

c

Decoder: st = gU(yt-1, st-1, c)

Recap: Sequence to Sequence with RNNs

Problem: Input sequence  
bottlenecks through fixed  
sized c. What if T=1000?

cielovediamo il

vediamo il cielo

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

we see the sky

x1 x2 x3 x4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

From final hidden state predict:
Encoder: ht = fW (xt, ht-1) Initial decoder state s0

Context vector c (often c=hT)

y1 y2



s1h1 h2 h3 s0 s2

[START]

y0

y1 y2

h4

y1 y3

s3 s4

y3 y4

[STOP]

c

Decoder: st = gU(yt-1, st-1, c)

Solution: Look back at the
whole input sequence on
each step of the output

cielovediamo il

vediamo il cielo

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

we see the sky

x1 x2 x3 x4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

From final hidden state predict:
Encoder: ht = fW (xt, ht-1) Initial decoder state s0

Context vector c (often c=hT)

y2

Recap: Sequence to Sequence with RNNs



h1 h2 h3 s0h4

Input: Sequence x1, … xT
Output: Sequence y1, …, yT’

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

Encoder: ht = f w(xt , ht-1)

Sequence to Sequence with RNNs and Attention

we see the sky

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0



h1 h2 h3 s0h4

e11 e12 e13 e14

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is a Linear Layer)

Sequence to Sequence with RNNs and Attention

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4



h1 h2 h3 s0h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

0 < at,i < 1

Sequence to Sequence with RNNs and Attention

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Compute (scalar) alignment scores
et,i = fatt(st-1, hi)         (fatt is a Linear Layer)

Normalize alignment scores 
to get attention weights

∑ ia t,i =1

vediamo



h1 h2 h3 s0h4

e11 e12 e13 e14

a11 a12 a13 a14

softmax

c1

+ s1

y0

y1

[START]

Sequence to Sequence with RNNs and Attention

From final hidden state:
Initial decoder state s0

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fat t is a Linear Layer)

vediamo

Compute context vector as  
weighted sum of hidden  
states
ct = ∑iat,ihi

Use context vector in  
decoder: st = gU(yt-1, st-1, ct)

All differentiable! No  
supervision on attention  
weights. Backprop  
through everything

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

0 < at,i < 1 ∑ ia t,i =1

Normalize alignment scores 
to get attention weights

Intuition: Context  
vector attends to the  
relevant part of the  
input sequence  
“vediamo” = “we see”  
so maybe a11=a12=0.45,  
a13 = a 14 = 0.05



h1 h2 h3 s0h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

a21 a22 a23 a24

softmax

+

Repeat: Use s1to compute  
new context vector c2

Sequence to Sequence with RNNs and Attention

Compute new alignment
scores e2,1and attention
weights a2,I   

vediamo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4



h1 h2 h3 s0h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Sequence to Sequence with RNNs and Attention

s2

y2

il

y1

Use context vector
in decoder: st =
gU(yt-1, st-1, c t)

vediamo

vediamo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Repeat: Use s1to compute  
new context vector c2



h1 h2 h3 s0h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Sequence to Sequence with RNNs and Attention

s2

y2

y1

Intuition: Context vector  
attends to the relevant  
part of the input sequence  
“il” = “the”
so maybe a21=a22=0.05,  
a24=0.1, a23=0.8

ilvediamo

vediamo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4

Use context vector
in decoder: st =
gU(yt-1, st-1, c t)

Repeat: Use s1to compute  
new context vector c2



h1 h2 h3 s0h4 s1 s2

[START]

y0

s3 s4

y1 y2 y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through singlevector
- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

Sequence to Sequence with RNNs and Attention

cielovediamo il

vediamo il cielo

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4



Example: English to
French translation Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

h1 h2 h3 h4

e21 e22 e23 e24

softmax

a21 a22 a23 a24

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015

we see the sky

x1 x2 x3 x4



Example: English to
French translation

Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone  
économique européenne a été  
signé en août 1992.”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015



Visualize attention weights a t,i

Sequence to Sequence with RNNs and Attention

Diagonal attention
means words 

correspond in order

Input: “The agreement on the
European Economic Area was
signed in August 1992.”

Output: “L’accord sur la zone
économique européenne a été
signé en août 1992.”

Example: English to
French translation

Diagonal attention 
means words 

correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015



Visualize attention weights a t,i

Diagonal attention 
means words 

correspond in order

Sequence to Sequence with RNNs and Attention

Input: “The agreement on the  
European Economic Area was  
signed in August 1992.”

Output: “L’accord sur la zone  
économique européenne a été  
signé en août 1992.”

Example: English to
French translation

Attention figures
out other word

orders

Diagonal attention
means words 

correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR2015



h1 h2 h3 s0

x1 x2 x3 x4

h4

y0

s1 s4

y1 y2 y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Sequence to Sequence with RNNs and Attention

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

There’s a general
operator hiding here:

vediamo il cielo

we see the sky
[START] vediamo il cielo

s3s2



h1 h2 h3 s0h4 s1 s2

y0

s3 s4

y1 y2 y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Sequence to Sequence with RNNs and Attention
Query vectors (decoder RNN states) and
data vectors (encoder RNN states)
get transformed to
output vectors (Context states).
Each query attends to all data vectors and
gives one output vector

[START] vediamo il cielo

x1 x2 x3 x4

we see the sky

There’s a general
operator hiding here:

vediamo il cielo



Attention Layer
Inputs:
Query vector: q[DQ]



Attention Layer

Data vectors: X[ NX x DX]

Inputs:
Query vector: q[DQ]



Attention Layer

Computation:
Similarities: e [NX] ei = fatt(q, Xi)

Data vectors: X[ NX x DX]

Inputs:
Query vector: q[DQ]



Attention Layer

Computation:
Similarities: e [NX] ei = fatt(q, Xi)  
Attention weights: a = softmax(e) [NX]

Data vectors: X[ NX x DX]

Inputs:
Query vector: q[DQ]



Attention Layer

Output vector: y = ∑ i a i Xi [[ D  x]

Computation:
Similarities: e [NX] ei = fatt(q, Xi)  
Attention weights: a = softmax(e) [NX]

Inputs:
Query vector: q[DQ]
Data vectors: X[ NX x DX]



Attention Layer

Let’s generalize this!
Output vector: y = ∑ i a i Xi [[ D  x]

Computation:
Similarities: e [NX] ei = fatt(q, Xi)  
Attention weights: a = softmax(e) [NX]

Inputs:
Query vector: q[DQ]
Data vectors: X[ NX x DX]



Computation:
Similarities: e [NX] ei = q · Xi
Attention weights: a = softmax(e) [NX]

Attention Layer

Changes
- Use dot product for similarity

Output vector: y = ∑ i a i Xi [[ D  x]

Inputs:
Query vector: q[DX]
Data vectors: X[ NX x DX]



Output vector: y = ∑ i a i Xi [[ D  x]

Inputs:
Query vector: q[DX]
Data vectors: X[ NX x DX]

Attention Layer

Changes
- Use scaled dot product for similarity

Computation:
Similarities: e [NX] ei = q · Xi /  DX

Attention weights: a = softmax(e) [NX]



Attention Layer

Output vector: y = ∑ i a i Xi [[ D  x]

Inputs:
Query vector: q[DX]
Data vectors: X[ NX x DX]

Changes
- Use scaled dot product for similarity

Computation:
Similarities: e [NX] ei = q · Xi /  DX

Attention weights: a = softmax(e) [NX]

Large similarities will cause softmax to 
saturate and give vanishing gradients 
Recall a · b = |a||b| cos(angle)
Suppose that a and b are constant 
vectors of dimension D
Then |a| = ∑𝑎! "/!=a 𝐷



Attention Layer
Inputs:
Query vector: Q [ NQ x DX ]  
Data vectors: X[NX x DX ]

Computation:
Similarities: E = QXT / 𝐷𝑋 [ NQ x NX]

Eij = Qi·Xj / 𝐷𝑋
Attention weights: A = softmax(E, dim=1) [NQ x NX]
Output vector: Y = AX [NQx DX] Changes

- Use scaled dot product for similarity
- Multiple query vectors

Yi = ∑jAijXj



Attention Layer
Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]  
Key matrix: WK[DX x DQ]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ ]
Values: V = XWV [NX x DV]
Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]
Output vector: Y = AV [NQ x DV]

Changes
- Use scaled dot product for similarity
- Multiple query vectors
- Separate key and value

Yi = ∑jAijVj



Computation:
Keys: K = XWK   [NX  x DQ]
Values: V = XWV   [NX x DV]
Similarities: E = QKT / 𝐷𝑄[NQx NX]

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Attention Layer
Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]
Key matrix: WK[DX x DQ]
Value matrix: WV [DXx DV]

X1

X2

X3

Q2 Q3 Q4Q1



Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]  
Key matrix: WK[DX x DQ]
Value matrix: WV [DX x DV]

Computation:  
Keys: K = XWK  
Values: V = XWV

[NX  x DQ]
[NX x DV]

Similarities: E = QKT / 𝐷𝑄[NQx NX]
Ei j = Qi · Kj / 𝐷𝑄

Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

X1

X2

X3

K1

K2

K3

V1

V2

V3

Q2 Q3 Q4Q1

Attention Layer



Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

V1

V2

V3

Q2 Q3 Q4Q1

Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]  
Key matrix: WK[DX x DQ]
Value matrix: WV [DX x DV]

Computation:  
Keys: K = XWK  
Values: V = XWV

[NX  x DQ]
[NX x DV]

Similarities: E = QKT / 𝐷𝑄[NQx NX]
Ei j = Qi · Kj / 𝐷𝑄

Attention Layer



Key matrix: W [D x D ]

Attention Layer
Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]

K X Q

Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ ]
Values: V = XWV [NXx DV]
Similarities: E = QKT / 𝐷 [N x N ]𝑄 Q X

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Softmax( )

X1 K1

X2 K2

X3 K3

E1,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E2,1 E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Softmax normalizes each  
column: each query predicts  
a distribution over the keys

Q2 Q3 Q4Q1



Attention Layer
Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]

K X QKey matrix: W [D x D ]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ ]
Values: V = XWV [NXx DV]
Similarities: E = QKT / 𝐷 [N x N ]𝑄 Q X

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQ x NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Softmax( )

Q1

X1 K1

X2 K2

X3 K3

E1,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E2,1 E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product( ), Sum( )

Q2 Q3 Q4

Y1 Y2 Y3 Y4Each output is a linear  
combination of all values,  
weighted by attention weights



Cross-Attention Layer
Inputs:
Query vector: Q[ NQ x DQ ]  
Data vectors: X[ NX x DX]

K X QKey matrix: W [D x D ]
Value matrix: WV [DX x DV]

Computation:
Keys: K = XWK [NX x DQ ]
Values: V = XWV [NXx DV]
Similarities: E = QKT / 𝐷 [N x N ]𝑄 Q X

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [NQx NX]
Output vector: Y = AV [NQx DV]

Yi = ∑jAijVj

Each query produces  
one output, which isa  
mix of information in  
the data vectors

Softmax( )

Q1

X1 K1

X2 K2

X3 K3

E1,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E2,1 E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product( ), Sum( )

Q2 Q3 Q4

Y1 Y2 Y3 Y4



Inputs:
Input vectors: X [N x D ]in
Key matrix: WK[Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ[Dinx Dout]

Computation:
Queries: Q = XW Q [N x Dout]
Keys: K = XWK   [N x Dout]
Values: V = XWV   [N x Dout]
Similarities: E = QKT / 𝐷 [N x N]𝑄

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces  
one output, which is  
a mix of information  
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

A1,3 A2,3 A3,3

Softmax( )

V1

V2

V3

Product( ), Sum( )

Y1 Y2 Y3

Shapes get a little simpler:
- N input vectors, each Din
- Almostalways D = D = DQ V out

Q1 Q2 Q3

X1 X2 X3



Inputs:
Input vectors: X[N x Din]  
Key matrix: WK[Din x Dout]  
Value matrix: WV [Din x Dout]  
Query matrix: WQ[Dinx Dout]

Computation:
Queries: Q = XW Q [N x Dout]
Keys:
Values:

K = XWK   [N x Dout]
V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄[N x N]
Ei j = Qi · Kj / 𝐷𝑄

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces  
one output, which is  
a mix of information  
from all inputs

K1

K2

V1

V2

From each input:  
compute a query,  
key, and value vector

Often fused to onematmul:

[Q K V] = X[W W W ]Q K V
[N x 3Dout] = [N x Din] [Din x 3Dout]

Q1 Q2 Q3

X1 X2 X3

V3

K3



Inputs:
Input vectors: X[N x Din]  
Key matrix: WK[Din x Dout]  
Value matrix: WV [Din x Dout]  
Query matrix: WQ[Dinx Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK   [N x Dout]
Values: V = XWV   [N x Dout]
Similarities: E = QKT / 𝐷 [N x N]𝑄

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces  
one output, which is  
a mix of information  
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

V1

V2

V3

Compute similarity  
between each query  
and each key

Q1 Q2 Q3

X1 X2 X3



Inputs:
Input vectors: X [ N x D ]in
Key matrix: WK[Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ[Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK   [N x Dout]
Values: V = XWV   [N x Dout]
Similarities: E = QKT / 𝐷 [N x N]𝑄

Ei j = Qi · Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

Self-Attention Layer

Each input produces  
one output, which is  
a mix of information  
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,2 A2,2 A3,2

A1,3 A2,3 A3,3

Softmax( )

A1,1 A2,1 A3,1V1

V2

V3

Normalize over each column:  each query 
computes a  distribution over keys

Q1 Q2 Q3

X1 X2 X3



Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Each input produces
one output, which is  
a mix of information
from all inputs

Self-Attention Layer
Compute output vectors as linear
combinations of value vectors

Yi= ∑jAijVj

Y1 Y2 Y3

Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V1

A2,2

K1

K2

K3

A3,3

A3,2V2

V3

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1



Product( ), Sum( )

Softmax( )

Q3

X3

Q2

X2

Q1

X1

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer
Consider permuting inputs:



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ
Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Self-Attention Layer
Product( ), Sum( )

Softmax( )

V3

K3

K1

K2

V1

V2

Q3

X3

Q2

X2

Q1

X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but
permuted

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer
Product( ), Sum( )

E1,1

Softmax( )

E2,2

E2,1

E3,3

E3,1

E3,2

V3

K3

K1

K2

V1

V2

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but
permuted

Attention weights are the
same but permuted

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer
Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V3

A2,2

K3

K1

K2

A3,3

A3,2V1

V2

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Eij = Qi ·Kj / OQ

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but
permuted

Attention weights are the
same but permuted

Outputs are the same but
permuted

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer Y1 Y2 Y3

Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V3

A2,2

K3

K1

K2

A3,3

A3,2V1

V2

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]

Self-Attention is
permutation equivariant:
F(σ(X)) = σ(F(X))

This means that Self-Attention
works on sets of vectors

Similarities: E = QKT / OQ [N x N]
Eij = Qi ·Kj / OQ

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer Y1 Y2 Y3

Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V3

A2,2

K3

K1

K2

A3,3

A3,2V1

V2

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1



Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Problem: Self-Attention
does not know the order of
the sequence

Self-Attention Layer Y1 Y2 Y3

Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V1

A2,2

K1

K2

K3

A3,3

A3,2V2

V3

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3

Q3

X3

Q2

X2

Q1

X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]

Problem: Self-Attention
does not know the order of
the sequence

Solution: Add positional
encoding to each input; this
is a vector that is a fixed
function of the index

Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Self-Attention Layer Y1 Y2 Y3

Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

E3,3

E3,1

A3, 1

E3,2

V1

A2,2

K1

K2

K3

A3,3

A3,2V2

V3

X3
E(3)

X2

E(2)

X1
E(1)

Q2 Q3Q1

A1,2

A1,3 A2,3

E2,3

E1,2

E1,3



Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Q3

X3

Q2

X2

Q1

X1

Masked Self-Attention Layer
Don’t let vectors “ look ahead” in the sequence Y1 Y2 Y3

Product( ), Sum( )

A1,1

E1,1

Softmax( )

E2,2

A2, 1

E2,1

-∞ E3,3

E3,1

0

A3, 1

E3,2

0

V1

A2,2

K1

K2

K3

0 A3,3

A3,2

-∞

-∞

V2

V3



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]

Override similarities with -inf;
this controls which inputs each
vector is allowed to look at.

Used for language modeling
where you want to predict the
next word

Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AV [N x Dout]

Masked Self-Attention Layer
Don’t let vectors “ look ahead” in the sequence

Product( ), Sum( )

Attention is very

is very cool

A1,1

E1,1

Q2

Softmax( )

E2,2

A2, 1

E2,1

-∞ E3,3

Q3

E3,1

0

A3, 1

E3,2

0

V1

A2,2

K1

K2

K3

0 A3,3

Q1

A3,2

-∞

-∞

V2

V3



Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X2 X3X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

H = 3 independent
self-attention layers
(called heads), each
with their own weights

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X2 X3X1



Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

Yi AijVj

Stack up the H
independent outputs
for each input X

H = 3 independent
self-attention layers
(called heads), each
with their own weights

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

Y1, 1

Y1,2

Y1,3

Y2, 1

Y2,2

Y2,3

Y3, 1

Y3,2

Y3,3

X2 X3X1



Attention weights: A = softmax(E, dim=1) [N x N]
Output vector: Y = AX [N x Dout]

Inputs:
Input vectors: X [N x D in]
Key matrix: WK [Din x Dout]
Value matrix: WV [Din x Dout]
Query matrix: WQ [Din x Dout]

Computation:
Queries: Q = XWQ [N x Dout]
Keys: K = XWK [N x Dout]
Values:   V = XWV [N x Dout]
Similarities: E = QKT / OQ [N x N]

Output projection fuses
data from each head

Stack up the H
independent outputs
for each input X

H = 3 independent
self-attention layers
(called heads), each
with their own weights

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

O1

Y1, 1

Y1,2

Y1,3

O2

Y2, 1

Y2,2

Y2,3

O3

Y3, 1

Y3,2

Y3,3

X2 X3X1



Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Each of the H parallel
layers use a qkv dim of
DH = “ head dim”

Usually DH = D / H, so    
inputs and outputs have
the same dimension

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

O1

Y1, 1

Y1,2

Y1,3

O2

Y2, 1

Y2,2

Y2,3

O3

Y3, 1

Y3,2

Y3,3

X2 X3X1



Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

In practice, compute
all H heads in parallel
using batched matrix
multiply operations.

Used everywhere in
practice.

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

O1

Y1, 1

Y1,2

Y1,3

O2

Y2, 1

Y2,2

Y2,3

O3

Y3, 1

Y3,2

Y3,3

X2 X3X1



Self-Attention is Four Matrix Multiplies!
Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]



Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]

Self-Attention is Four Matrix Multiplies!

Similarities: E = QKT / 𝑂$ [H x N x N]



Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!



Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!



1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / OQ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!



1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Self-Attention is Four Matrix Multiplies!

Q: How much compute does this take
as the number of vectors N increases?



Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]
Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:
Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]

shape [H x N x DH]
2.   QK Similarity

[H x N x DH] [H x DH x N] => [H x N x N]
3.   V-Weighting

[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of

Self-Attention is Four Matrix Multiplies!

Q: How much compute does this take
as the number of vectors N increases?
A: O(N2)

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]



Self-Attention is Four Matrix Multiplies!

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Q: How much memory does this take
as the number of vectors N increases?

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]



Self-Attention is Four Matrix Multiplies!

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Q: How much memory does this take
as the number of vectors N increases?
A: O(N2 )

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]



Self-Attention is Four Matrix Multiplies!

Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]
Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Q: How much memory does this take
as the number of vectors N increases?
A: O(N2 )

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]

If N=100K, H=64 then
HxNxN attention weights
take 1.192 TB! GPUs don’t
have that much memory…

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]



Query matrix: WQ [D x HDH]
Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]
Keys: K = XWK [H x N x DH]
Values:   V = XWV [H x N x DH]

2.   QK Similarity
[H x N x DH] [H x DH x N] => [H x N x N]

3.   V-Weighting
[H x N x N] [H x N x DH] => [H x N x DH]
Reshape to [N x HDH]

Similarities: E = QKT / 𝑂$ [H x N x N]
Attention weights: A = softmax(E, dim=1) [H x N x N]
Head outputs: Y = AV [H x N x DH] => [N x HDH]
Outputs: O = YWO [N x D]

Inputs:
Input vectors: X [N x D]
Key matrix: WK [D x HDH]
Value matrix: WV [D x HDH]

Flash Attention
algorithm computes
2+3 at the same time   
without storing the
full attention matrix!

Q: How much memory does this take
as the number of vectors N increases?
A: O(N) with Flash Attention

4.   Output Projection
[N x HDH] [HDH x D] => [N x D]

If N=100K, H=64 then
HxNxN attention weights
take 1.192 TB! GPUs don’t
have that much memory…

1.   QKV Projection
[N x D] [D x 3HDH] => [N x 3HDH]
Split and reshape to get Q, K, V each of
shape [H x N x DH]

Dao et al, “ FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness ” , 202 2

Self-Attention is Four Matrix Multiplies!

Makes large N
possible



Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially
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x1 x3 x4

y1 y3 y4

Three Ways of Processing Sequences
Recurrent Neural Network



Recurrent Neural Network Convolution

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

x2

y2

x1 x2 x3 x4

y1 y2 y3 y4

x1 x3 x4

y1 y3 y4

Three Ways of Processing Sequences



Works on sets of vectors

(+) Great for long sequences; each
output depends directly on all inputs
(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N)
memory for sequence of length N

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

Three Ways of Processing Sequences

Softmax(↑)
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Works on sets of vectors

(+) Great for long sequences; each
output depends directly on all inputs
(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N)
memory for sequence of length N

Works on N-dimensional grids

(-) Bad for long sequences: need to
stack many layers to build up large
receptive fields
(+) Parallelizable, outputs can be
computed in parallel

Works on 1D ordered sequences

(+) Theoretically good at long
sequences: O(N) compute and
memory for a sequence of length N
(-) Not parallelizable. Need to
compute hidden states sequentially

Three Ways of Processing Sequences

Softmax(↑)

E1 ,3

E1 ,2

E2 ,1

E2 ,2

E2 ,3 E3 ,3

E3 ,2

E3 ,1

V3

V2

V1

Q3Q1 Q2

K1
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Recurrent Neural Network
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Self-AttentionConvolution
Product(→),目Sum(↑)
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Attention is All You Need 
Vaswani et al, NeurIPS 2017



Transformer Block

Input: Set of vectors x

x2 x3 x4x1

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Self-Attention

x2 x3 x4x1

The Transformer
Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

All vectors interact through   
(multiheaded) Self-Attention



+
Self-Attention

x2 x3 x4x1

The Transformer
Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Residual connection

All vectors interact through   
(multiheaded) Self-Attention



Recall Layer Normalization (Baet al, 2016):
Given h1, …, h N (Shape: D)
scale: Y						 (Shape: D)  
shift: β	 (Shape: D)
𝜇! = ∑" ℎ!," /𝐷 (scalar)

𝛿! = ∑" ℎ!," − 𝜇!
$
/𝐷

%/$
(scalar)

𝑧! = ℎ! − 𝜇! /𝛿!
𝑦! = 𝛾∗𝑧! + 𝛽

Layer Normalization
+

Self-Attention

x2 x3 x4x1

The Transformer
Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017

Residual connection

All vectors interact through   
(multiheaded) Self-Attention

Layer normalization 
normalizes all vectors



Usually a two-layer MLP;
classic setup is
D => 4D => D

Also sometimes called FFN
(Feed-Forward Network)

MLP MLP MLP MLP

Layer Normalization
+

Self-Attention

x2 x3 x4x1

The Transformer

MLP independently  
on each vector

Residual connection

All vectors interact through   
(multiheaded) Self-Attention

Layer normalization 
normalizes all vectors

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Transformer Block

Input: Set of vectors x

The Transformer

MLP MLP MLP MLP

Layer Normalization
+

+

Self-Attention

x2 x3 x4x1

Residual connection

Residual connection

All vectors interact through   
(multiheaded) Self-Attention

Layer normalization 
normalizes all vectors

MLP independently  
on each vector

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Transformer Block

Input: Set of vectors x

The Transformer

Another Layer Norm

y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1

Residual connection

Residual connection

All vectors interact through   
(multiheaded) Self-Attention

Layer normalization 
normalizes all vectors

MLP independently  
on each vector

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Vaswani et al, “Attention is all you need,” NeurIPS 2017

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

The Transformer
y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1



Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

A Transformer is just a stack of       
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

A Transformer is just a stack of       
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

A Transformer is just a stack of       
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]
48 blocks, D=1600, H=25, N=1024
1.5B params

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017



A Transformer is just a stack of       
identical Transformer blocks!

They have not changed much since
2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]
48 blocks, D=1600, H=25, N=1024
1.5B params

GPT-3: [Brown etal, 2020]
96 blocks, D=12288, H=96, N=2048
175B params

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only
interaction between vectors

LayerNormand MLP work on
each vector independently

Highly scalable and
parallelizable, most of the
compute is just 6 matmuls:

4 from Self-Attention
2 from MLP

The Transformer

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Embedding Matrix
[V x D]

Attention      is      all     you



Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

Embedding Matrix
[V x D]

Attention      is      all     you



Transformers for Language Modeling (LLM)

Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of
shape [D x V] to project each D-dim
vector to a V-dim vector of scores for        
each element of the vocabulary.

Projection Matrix
[D x V]

Embedding Matrix
[V x D]

Attention      is      all     you

is all     you    need



Learn an embedding matrix at the start of
the model to convert words into vectors.

Given vocab size V and model dimension
D, it’s a lookup table of shape [V x D]

Use masked attention inside each
transformer block so each token can only
see the ones before it

At the end, learn a projection matrix of
shape [D x V] to project each D-dim
vector to a V-dim vector of scores for        
each element of the vocabulary.

Train to predict next token using softmax
+ cross-entropy loss

Transformers for Language Modeling (LLM)

Projection Matrix
[D x V]

Embedding Matrix
[V x D]

Attention      is      all     you

is all     you    need



Input image:
e.g. 224x224x3

Vision Transformers (ViT)

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1



Vision Transformers (ViT)

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1



Vision Transformers (ViT)

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1



Vision Transformers (ViT)

Q: Any other way to  
describe this operation?

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1



Vision Transformers (ViT)

Q: Any other way to  
describe this operation?

A: 16x16 conv with stride  
16, 3 input channels, D  
output channels

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1



Vision Transformers (ViT)

Break into patches Flatten and apply a linear
transform 768 => De.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

D-dim vector perpatch  
are the input vectors to

the Transformer

Pooling



Vision Transformers (ViT)

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

D-dim vector perpatch  
are the input vectors to

the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Pooling



Vision Transformers (ViT)

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Don’t use any  
masking; each  

image patch can  
look at all other  
image patches

D-dim vector perpatch  
are the input vectors to

the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Pooling



Vision Transformers (ViT)

Don’t use any  
masking; each  

image patch can  
look at all other  
image patches

D-dim vector perpatch  
are the input vectors to

the Transformer

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Transformer  
gives an output  
vector per patch

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Pooling



Vision Transformers (ViT) Average pool NxD vectors to  
1xD, apply a linear layer  

D=>C to predict class scores

Flatten and apply a linear  
transform 768 => D

Break into patches
e.g. 16x16x3

Input image:
e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth
16x16 Words: Transformers for Image

Recognition at Scale ” , ICLR 202 1

Don’t use any  
masking; each  

image patch can  
look at all other  
image patches

D-dim vector perpatch  
are the input vectors to

the Transformer

Use positional
encoding to tell
the transformer
the 2D position
of each patch

Transformer  
gives an output  
vector per patchPooling



Tweaking Transformers
The Transformer architecture has not  
changed much since 2017.

But a few changes have become common:

y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1



Pre-Norm Transformer

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018

Layer normalization is outside  
the residual connections

Kind of weird, the model can’t  
actually learn the identify function

y1 y2 y3 y4

MLP MLP MLP MLP

Layer Normalization
+

Layer Normalization
+

Self-Attention

x2 x3 x4x1



Pre-Norm Transformer

Layer normalization is outside  
the residual connections

Kind of weird, the model can’t  
actually learn the identify function

Solution: Move layer  
normalization before the Self-
Attention and MLP, inside the  
residual connections. Training is  
more stable.

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

Layer Normalization

Layer Normalization

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018



RMSNorm
Replace Layer Normalization  
with Root-Mean-Square  
Normalization (RMSNorm)

Input: x [shape D]  
Output: y [shape D]  
Weight: 𝛾[shape D]

Zhang and Sennrich, “Root Mean Square Layer Normalization”,NeurIPS 2019

Training is a bit more stable

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm𝑦% =
&"

'() &
∗ 𝛾%

𝑅𝑀𝑆 𝑥 = 𝜀 +
1
𝑁
1

%*"

+
𝑥%!



SwiGLU MLP

Shazeer, “GLU Variants Improve Transformers”, 2020

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Classic MLP:

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% [𝐷x4𝐷 ]

𝑊$ [4𝐷x𝐷 ]
Output: 𝑌 =𝛿(𝑋𝑊%)𝑊$ [ 𝑁 x𝐷]



SwiGLU MLP
Classic MLP:

SwiGLU MLP:

Setting H = 8D/3keeps  
same total params

Shazeer, “GLU Variants Improve Transformers”, 2020

𝑌 = 𝛿 𝑋𝑊% ⨀𝑋𝑊& 𝑊'

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% [𝐷x4𝐷 ]

𝑊$ [4𝐷x𝐷 ]
Output: 𝑌 =𝛿(𝑋𝑊%)𝑊$ [ 𝑁 x𝐷]

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% ,𝑊$[𝐷x𝐻 ]

𝑊([𝐷x𝐻 ]
Output:



SwiGLU MLP
Classic MLP:

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% [𝐷x4𝐷 ]

𝑊$ [4𝐷x𝐷 ]
Output: 𝑌 =𝛿(𝑋𝑊%)𝑊$ [ 𝑁 x𝐷]

SwiGLU MLP: We offer no explanation as
to why these architectures
seem to work; we attribute  
their success, as all else,  
to divine benevolence.

𝑌 = 𝛿 𝑋𝑊% ⨀𝑋𝑊& 𝑊'

Input: 𝑋 [𝑁 x𝐷]
Weights: 𝑊% ,𝑊$[𝐷x𝐻 ]

𝑊([𝐷x𝐻 ]
Output:

Setting H = 8D/3keeps  
same total params

Shazeer, “GLU Variants Improve Transformers”, 2020

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm



Mixture of Experts (MoE)

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017

Learn E separate sets of MLP weights in  
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]  
W2: [4D x D] => [E x 4D x D]

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm



Mixture of Experts (MoE)

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017

Learn E separate sets of MLP weights in  
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]  
W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the  
experts. These are the activeexperts.

Increases params by E,
But only increases compute by A

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm



Mixture of Experts (MoE)
Learn E separate sets of MLP weights in  
each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]  
W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the  
experts. These are the activeexperts.

Increases params by E,
But only increases compute by A

All of the biggest LLMs today (e.g.  
GPT4o, GPT4.5, Claude 3.7, Gemini 2.5  
Pro, etc) almost certainly use MoE and  
have > 1T params; but they don’tpublish  
details anymore

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm



Tweaking Transformers
The Transformer architecture has not  
changed much since 2017.

But a few changes have become common:
- Pre-Norm: Move normalization inside  residual
- RMSNorm: Different normalizationlayer
- SwiGLU: Different MLP architecture
- Mixture of Experts (MoE): Learn E

different MLPs, use A < E of themper  token. 
Massively increase params,  modest 
increase to compute cost.

y1 y2 y3 y4

MLP MLP MLP MLP

+

+

Self-Attention

x2 x3 x4x1

RMSNorm

RMSNorm



Summary: Attention + Transformers

Attention: A new primitive that  
operates on sets of vectors

Transformer: A neural  
network architecture that  
uses attention everywhere

Transformers are the
backbone of all large
AI models today!

Used for language,
vision, speech, …



Large Multi-modal Models



Large Multi-modal Models (BLIP)



Large Multi-modal Models (BLIP)

• Learning Framework of BLIP



Large Multi-modal Models (BLIP)



Large Multi-modal Models (BLIP-2)

• Pretraining Pipeline

Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language 
models." arXiv preprint arXiv:2301.12597 (2023).



Large Multi-modal Models (BLIP-2)
• Pretraining Pipeline
Model architecture of Q-Former and BLIP-2’s first-stage vision-language representation learning objectives. 

The self-attention masking 
strategy for each objective to 
control query-text interaction.



Large Multi-modal Models (BLIP-2)
• Results on Zero-shot Vision-Language Models 
Overview of BLIP-2 results on various zero-shot vision-language tasks.

Comparison with state-of-the-art methods on zero-shot visual question answering.



Large Multi-modal Models (InstructBLIP)

• Model Architecture

Dai, Wenliang, et al. "InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning." arXiv
preprint arXiv:2305.06500 (2023).



Large Multi-modal Models (InstructBLIP)

• Comparison between BLIP-2 and InstructBLIP



Large Multi-modal Models (Frozen)

• Model Architecture

Tsimpoukelli, Maria, et al. "Multimodal few-shot learning with frozen language models." Advances in Neural Information 
Processing Systems 34 (2021): 200-212.



Large Multi-modal Models (Frozen)

• Inference-time Interface



Large Multi-modal Models (Frozen)
• Experiment Results



Large Multi-modal Models (Flamingo)

• Architecture Overview

Alayrac, Jean-Baptiste, et al. "Flamingo: a visual language model for few-shot learning." Advances in Neural Information 
Processing Systems 35 (2022): 23716-23736.



Large Multi-modal Models (Flamingo)

• GATED XATTN-DENSE layers



Large Multi-modal Models (Flamingo)

• Experiment Results



Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 15, 
Generative Model

Introduction to Computer Vision


