Introduction to Computer Vision

Lecture 13
Detection and Instance Segmentation

Prof. He Wang

Embodied Perception and InteraCtior



e Assignment 4 (Point Cloud Learning, Detection & RNN)
* To be released on 5/23
e Due on 6/7 11:59PM



Sequence to Sequence with RNNs and
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence to Sequence with RNNs and
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Object Detection

Some slides are borrowed from Stanford CS231N.



Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

GRASS, CAT, DOG, DOG, CAT DOG, DOG, CAT
C , \ TREE,SKY , ¥

No spatial extent No objects, just pixels Multiple Object Thia imag fs CCO public domao
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Object Detection: Single Object

 Task: localization + classification

e Output: 2D (axis aligned) bounding box

* How many degree-of-freedom?
e 4 DoF

* How to parameterize such a bounding box?

* X,¥,h,w



Object Detection: Single Object

* Localization + Classification

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car: 0.01

Fully

Connected:
4096 4006104  Box

Coordinates

Vector:

(X, y, w, h)



Object Detection: Single Object

Correct label:

Cat
Class Scores l
Fully Cat: 0.9 . Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

TR . Fully
Thia imaga le CCO public domaln Vector: Connected:

4096 4096 to 4 Box
Coordinates —» L2 Loss

(X, ¥, w, h) }

Treat localization as a

regression problem! Correct box:
(x” y,’ W’, hs)



Object Detection: Single Object

Correct label:
Cat

Class Scores l
Fully Cat: 0.9 , Softmax

Connected: Dog: 0.05 Loss
4096 to 1000 Car: 0.01

Multitask LoSS 4= —»Loss

2058 2048

Vector: Fully T

Connected:
4096 4505104  Box

Coordinates —» L2 Loss

Y, W, h
Treat localization as a 03w 1) T

regression problem! SOFactinex:
(X’, ys’ W’, hs)
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Regression Loss

- Error: (Ax, Ay, Aw, Ah)

e L1 loss: X|A;| — robust, however not good at convergence

* L2 loss: ZA% (not the same to L2 norm) — not robust to a larger error,
however good at convergence

1
* Rooted mean squared loss (RMSE): \/N ZA% — the gradient of sgrt

function is bad at O
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Regression Loss

* Smooth L1 loss (proposed by Fast RCNN, very similar to Huber loss
widely used in robust optimization)

L1

L2 /

smooth L1

Ly(z) = 2° (1)

Ly (z) = || (2)

0.5z° if |z| <1

smoothy, (z) = { x| — 0.5 otherwise
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Object Detection: Multiple Objects

DOG: (x,y, w, h)
DOG: (x,y, w, h)
CAT: (x,y, w, h)

DUCK: (x, y, w, h)
DUCK: (X, y, w, h)

Different images need different numbers of outputs!

1 bounding box

3 bounding boxes

Many bounding
boxes!
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Sliding-Window based Multi-Object Detection

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

3 ,
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VL Dog? NO
« « \ X A r— -
/\ I\ !
) ) / / \
YL Cat? NO
densed |~ =)

eeeee

— e e ] L] Background? YES




Sliding-Window based Multi-Object Detection

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background
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Sliding-Window based Multi-Object Detection

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Q == i \';i:x:f""i\fi;x::jf’*“'"' Dog? YES
SN car?No
M j 8 Background? NO

‘L\—/ ot
¥
=1
\
n
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Sliding-Window based Multi-Object Detection

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

%ﬁ\\m\ \% i’ ‘,“ J i Dog? NO
] 1 Q § g‘:% F\I" = i \{l;u*- }:’ f.,. :lense }e.s; I Cat? YES
Qﬂ e e, ™ T TR I Background? NO

Q: What's the problem with this approach?
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Sliding-Window based Multi-Object Detection

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

N | A —.‘ k\
“J Dog? NO
LIl Cat? YES

agense gense

N T«J Background? NO

Problem: Need to apply CNN to huge
number of locations, scales, and aspect
ratios, very computationally expensive!
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Region Proposals: Selective Search

e Find “blobby” image regions that are likely to contain objects

e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, [JCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps", CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014
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Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation®, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Ay Warped image regions
Ay (224x224 pixels)

Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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ConvN
et

ConvN
et

ConvN
et

Forward each region
through ConvNet
(ImageNet-pretranied)

A7 Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

23



SVMs

SVMs

SVMs

L]

ConvN
et

ConvN
et

ConvN

et

Classify regions with
SVMs

Forward each region
through ConvNet
(ImageNet-pretranied)

& Warped image regions

(224x224 pixels)

Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs

Bbox reg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN

L]

ConvN

et

Classify regions with
SVMs

Forward each region
through ConvNet
(ImageNet-pretranied)

ﬁ Warped image regions

(224x224 pixels)

Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission. 25



Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs Classify regions with Problem: Very slow!

Bboxreg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN
et !

L]

ConvN
et

SIS Need to do ~2k

independent forward

Forward each :
passes for each image!

region through
ConvNet

E Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs Classify regions with Problem: Very slow!

Bboxreg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN
et !

L]

ConvN
et

>VMs Need to do ~2k
independent forward

Forward each :
passes for each image!

region through
ConvNet

Problem 2: The

E Warped image regions cropped region

(224x224 pixels) doesn’t contain

. sufficient information
Regions of Interest

(Rol) from a proposal Loo;ergerﬁsgn?gggdmg
method (~2k) .

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs Classify regions with Problem: Very slow!

Bboxreg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN
et !

L]

SIS Need to do ~2k

independent forward
Forward each :
ConvN . passes for each image!
ot region through
ConvNet
E Idea: Pass the
Warped image regions image through
(224x224 pixels) convnet before

Regions of Interest cropping! Crop the
(Rol) from a proposal ~ ©OMV feature instead!

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Fast R-CNN

SVMs
SVMs ——
SVMs
/ / “conv5” features Conv
' Conv Net
o ”n Run WhOIe image Conv NEt
Backbone through ConvNet
network: =
AlexNet, VGG, / ConvNet
ResNet, etc £ e .
— Input image

Girshick, “Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast RCNN R-CNN
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Fast R-CNN

Regions of
Interest (Rols)

from a proposal
method %:i/ “conv5” features

Run whole image

“Backbone” through ConvNet
network: E—

ConvNet

AlexNet, VGG,
ResNet, etc

Girshick, “Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast RCNN

SVMs

SVMs

SVMs

Conv
Net

Conv
Net
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Fast R-CNN

Regions of

Interest (Rols)
/7 /7 Crop+Resize features

from a proposal
method &M “conv5” features

“ ” Run whole image
Backbone through ConvNet

network:
AlexNet, VGG,
ResNet, etc

,,—"\IY“/ NS % D

Girshick, “Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast RCNN

SVMs

SVMs

SVMs

Conv
Net

Conv
Net
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Fast R-CNN

Object Linear +
Linear | Box offset

category softmax
Regions of CNN Per-Region Network
SVMs
Interest (Rols) 74N v 5

/7 /7 Crop + Resize features

y 4
from a proposal —
method & / “conv5” features Conv
t Conv Net

Net

it - Run whole image Conv
Backbone through ConvNet
network:
AlexNet, VGG, / ConvNet
ResNet, etc £ : :
_ - Input image

Girshick, “Fast R-CNN", ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Fast RCNN R-CNN
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Fast R-CNN

Object Linear +

category softmax Linear | Box offset
Regions of ’| CNN " Per-Region Network
SVMs
Interest (Rols f s ——
( ) £/ ,—7 /7 |Crop+ Resize features s

from a proposal SVM
PP — i g ” : Conv
method conv5” features Em ik
Net
Conv

Run whole image

“Backbone” through ConvNet
network: .
AlexNet, VGG, 4  ConvNet ’
ResNet, etc =E = .
— Input image

Fast RCNN R-CNN
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Cropping Features: Rol Pool

Input Image Image features: C x Hx W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool

Project proposal \\

onto features

Input Image Image features: C x Hx W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)
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Cropping Features: Rol Pool

“Snap” to

' grid cells
Project proposal \

onto features

Input Image Image features: C x Hx W
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015. 36



Cropping Features: Rol Pool

“Snap” to

_ grid cells
Project proposal \‘

onto features

Q: how do we resize the 512
x 20 x 15 region to, e.g., a
512 x 2 x 2 tensor?.

Input Image Image features: C x H x W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.

37



Cropping Features: Rol Pool

“Snap” to

_ grid cells o
Project proposal \‘ Divide into 2x2
grid of (roughly)

onto features

equal subregions

Q: how do we resize the 512
x 20 x 15 region to, e.g., a
512 x 2 x 2 tensor?.

Input Image Image features: C x Hx W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
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Cropping Features: Rol Pool

“Snap” to

: grid cells
Project proposal \

onto features

Input Image Image features: C x Hx W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN", ICCV 2015.

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

>

Region features
(here 512 x 2 x 2;
In practice e.g 512 x 7 x 7)

Region features always the
same size even if input
regions have different sizes!
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R-CNN vs. Fast R-CNN

L Test time (seconds)
Tral ni ng tl me (HOU rS) B |ncluding Region propos... [l Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN 8.75
Fast R-CNN

0 25 S0 75 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN", ICCV 2015
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R-CNN vs. Fast R-CNN

Test time (seconds)

Tral ni ng tl me (HOU I'S) B Including Region propos... [l Excluding Region Propo...
R-CNN R-CNN
SPP-Net 4.3
SPP-Net 23
Fast R-CNN [l 8.75 Problem:

g 23 : :
FastR-CNN 17532 +—— Runtime dominated
i |
by region proposals!

0 25 S0 5 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015
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Faster R-CNN

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict
proposals from features

Otherwise same as Fast R-CNN:
Crop features for each proposal,
classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 =~ A

Figure copyright 2015, Ross Girshick; reproduced with permission

proposals/ /
Region Proposal Network [

42



Region Proposal Network

= N 2% e ‘:
£8 4
R N Y - ‘ ' Q L
e -0 o
b
L4
e R § — | t%;;-:l."’{~‘1" :(.“. &
T B 1 \‘q / g LWL S
: L & 1 Lﬁ:\ | ‘iﬁj»“; \,E‘é % ;‘\
i'\fi"'j'_ L A \ i ,'1 X r Yo
e L IR
o b Aok V’ ‘n’s* \) r) AN 2K

Input Image
(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)
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Region Proposal Network

Imagine an anchor box
of fixed size at each
point in the feature map

Input Image
(e.g. 3 x 640 x 480) Image features
(e.g.512x 20 x 15)
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Region Proposal Network

Imagine an anchor box
of fixed size at each
point in the feature map

Anchor is an object?

1x20x 15
Conv

»~
R |
N [
=S
k]
s A
—
%‘ ¢
J r - 1 .,""-
‘(-‘ Al g ju,‘.‘. ' tﬁ“f e "‘;‘i":, 5 L
v | \" ¥ ',;“_i",
: Pk % kl‘i
Al TR —
i N B A ) 2 i A
s MTETIRTER éﬁw‘kﬁ:ﬁ‘f”
o hetvii DA D L Dt N N R

Input Image
(e.g. 3 x 640 x 480) Image teatures
(e.g. 512 x 20 x 15)

At each point, predict
whether the corresponding
anchor contains an object

(binary classification)
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Region Proposal Network

Imagine an anchor box
of fixed size at each
point in the feature map

Anchor is an object?
1x20x15

Conv

| Box corrections

i; }3%“/

Wy A
E . ‘VK\" <
= P A 3

For positive boxes, also predict
a corrections from the anchor to

Input Image

.g. 3x 640 x 480 I feat
(e.g. 3 x 640 x 480) (e.g.'asaz fggrxe?s) the ground-truth box (regress 4

numbers per pixel)

46



Region Proposal Network

In practice use K different
anchor boxes of different
size / scale at each point

) 4
« R ! Anchor is an object?
Puo.
—- Kx20x15
3 Conv

. : KNS Box transforms
AT I 1NN 4K x 20 x 15
R SR S T AN B T
‘d::.yx: NI S ST ¥ Ry T - ?
P PR e 17 l’

Input Image
(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)
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Region Proposal Network

I--I i
P |
-~

o e A‘

5 L.- ro.

3

BN NE 7T e, 1 I
I S | LWL A
T 7 -~
| 4 t-“: 5\ Sl (At MR LN 2t ”3 5’7
AL RNLTR N 6 L 1 R A N B
e | VAT AT et 3 9 - -
Ao A‘l}{.‘.". i ﬁ ‘:Ugt. L\}.r); ’ni‘l Ay

Input Image
(e.g. 3 x 640 x 480) Image features
(e.g. 512 x 20 x 15)

In practice use K different
anchor boxes of different
size / scale at each point

Anchor is an object?
Kx20x15
Conv

Box transforms
4K x 20 x 15

Sort the K*20*15 boxes by
their “objectness” score,
take top ~300 as our
proposals
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Training Faster RCNN

Jointly train with 4 losses:

1. RPN classify object / not object

2. RPN regress box coordinates

3. Final classification score (object
classes)

4. Final box coordinates

' proposals/

Region Proposal Network 5

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 P LS A —=

Figure copyright 2015, Ross Girshick; reproduced with permission
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Inference Time: Two-Stage Detector

Faster R-CNN is a
Two-stage object detector

Raiindino
LOUuU Ul -ing
gression i:ﬁ‘r&i\,

ol pooling

First stage: Run once per image
- Backbone network
- Region proposal network

proposzV
Region Proposal Network 5

Second stage: Run once per region
- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

=2 €54

T =

| D OX
R

50



Inference Time

* First stage:
e Use backbone to extract features
* Use RPN to generate ~ 300 proposals
e Second stage:
* For each proposal, predict class label and bbox refinement

* Perform confidence thresholding to remove low-confidence bbox
predictions

* Perform non-maximal suppression (NMS) for deduplication
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Non-Maximal Suppression (NMS)

Input: A list of Proposal boxes B, corresponding confidence scores S (in Faster

RCNN, simply the classification score) and loU threshold .
Output: A list of detected bounding boxes D.

Before non-max suppression After non-max suppression

Non-Max
Suppression

=)
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NMS

Algorithm:

Initially D is empty

Select the proposal with highest confidence score, remove it from B and add it
to the final detection list D.

Now compare this proposal with all the proposals — calculate the loU of this
proposal with every other proposal. If the IOU is greater than the threshold T,
remove that proposal from B.

Again take the proposal with the highest confidence from the remaining
proposals in B and remove it from B and add it to D.

Once again calculate the IOU of this proposal with all the proposals in B and
eliminate the boxes which have a loU higher than T.

This process is repeated until there are no more proposals left in B.
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Speed Comparison

R-CNN Test-Time Speed

R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45
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How to Evaluate Detection?

Recall from optimal edge detection, Lecture 02

True
edge P.oor. Too many
localization responses

» Good accuracy (precision): minimize false positive
e Good localization (precision): maximize loU
e Single response constraint (precision): minimize redundant responses

e Good coverage (recall): make sure all edges are detected. 55



Evaluation Metric: AP (Average Precision)

Precision-Recall curve for Person

e Per category rank the output
bounding boxes according to the o ‘\\
confidence (classification score) in a 08
descending order.

e Select top n outputs and compute
recall.

e Precision: the ratio of bboxes that
satisfy loU > x% threshold 02

e Compute the area under precision-
recall curve (approximate by 11 0.0 s > e s o
points). recal

o
o

precision

o
S5

AP = Z Precision(Recall;) Recall _i=10, 0.1,0.2, ..., 1.0].

11 Recall;

https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-
a07fe6962cf3 56



https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3

Evaluation Metric: AP at Different loU Thres.

Precision-Recall curve for Person

1.2
IOU Thr
« 0.50
1.0 =g sars « 0.55
- N g « 0.60
4 « 0.65
0.8 . 0.70
« 0.75
= L 0.80
= 0.85
L2206 b = .
o [ ) 0.90
Q t 0.95
04 [
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

recall

Precision-Recall curves calculated at various loU thresholds, according to the COCO challenge. Dashed lines
correspond to equally spaced recall values where the AP is calculated.

https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-
a07fe6962cf3
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https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3

Evaluation Metric: mAP

*mMAP is the mean of AP across different categories
and/or loU thresholds. Sometimes m is ighored.
eExamples when evaluating on MS COCO:
AP
* APso
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Faster RCNN

Glossing over many details:

- How are anchors determined?

- How do we sample positive /
negative samples for training the
RPN?

- How to parameterize bounding
box regression?

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 =2 AR — e

Figure copyright 2015, Ross Girshick; reproduced with permission

' proposals/

Region Proposal Network "5
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Two-Stage Detector

Faster R-CNN is a -1 . i
Two-stage object detector R -

proposzV
First stage: Run once per image .

- Backbone network Region Proposal Network ‘2>
- Region proposal network
feature map |

Second stage: Run once per region
- Crop features: Rol pool / align
- Predict object class CNN

- Prediction bbox offset 4 |
= 77
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Two-Stage Detector

Do we really need the second stage?

Faster R-CNN is a -1 . i
Two-stage object detector R -

propost | /
First stage: Run once per image . |

- Backbone network Region Proposal Network ‘2>
- Region proposal network
feature map |

Second stage: Run once per region
- Crop features: Rol pool / align
- Predict object class CNN

- Prediction bbox offset 4 |
= 77
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Single-Stage Detectors: YOLO/SSD/RetinaNet

Input image
3XHxW

Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection®, ICCV 2017

Divide image into grid
[ & &

Image a set of base boxes
centered at each grid cell
Here B=3

Within each grid cell:

- Regress from each of the B
base boxes to a final box
with 5 numbers:

(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Output:
Ix7Tx(5*B+C)
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Object Detection: Lots of Variables

Backbone “Meta-Architecture” Takeaways

VGG16 Single-stage: YOLO / SSD but more accurate

ResNet-101 Hybrid: R-FCN |
Inception V2 SSD is much faster but

Inception V3 Image Size not as accurate
Inception # Region Proposals

ResNet Bigger / Deeper
MobileNet backbones work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors’, CVPR 2017
Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2: loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", ICML 2015
Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision", arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Leaming”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017
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End-to-End Object Detection with Transformers (DETR)

,,,, - no object (o)

no object (o)

o \| transformer
gt e - > »  encoder-

decoder

set of image features set of box predictions

backbone | encoder prediction heads | p—

L
set of image featuresi!

:.(L—_IL__IL__II%I_I%IL__I---D

"""""""" I T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T O T T T T T T T T T T T T T T T
I
I
I
I
I

object queries

|
!
=i
| |
| class,
¥ i T/\ ik pa 5
" |
| |
N ! 1 FFN > "°
—_____ _ g transformer : transformer | object
- encoder I decoder i FEN L. C18SS,
| i ! box
: r 4 4 . 3 : : ﬁ I£ I%I ﬁ :: —
| |
: OO0 ) | FFN >
[ : !
| | :. | {

- -—— - - — — — — — — - e - - - - - - - e — — — — — — — — — - - - e e e e — — — — — ——



Instance Segmentation

Some slides are borrowed from Stanford CS231N.



Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

GRASS, CAT, DOG, DOG, CAT DOG, DOG, CAT
C , \ TREE,SKY , ¥

No spatial extent No objects, just pixels Multiple Object Thia imag fs CCO public domao

66



Different Approaches for Instance Segmentation

* Top-down approach:object detection * Bottom-up approach:grouping and then
and then further find a binary mask classification

inside the bounding box * Grouping: group together similar

data points and represents them
with a single token

Object Instance
Detection Segmentation
] IZID H B -.
oo o " n
05 in [ o O
f' O
DOG, DOG, CAT  DOG, DOG, CAT [ a
] 0 ]
By
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Top-Down Approach: Mask R-CNN

He et al, “Mask R-CNN", ICCV 2017

Instance
Segmentation

DOG, DOG, CAT

proposals/

Region Proposal Ne

twork

CNN

— e

Y 4

Add a small mask
network that operates
on each Rol and
predicts a 28x28
binary mask
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Mask R-CNN

> Classification Scores: C
Box coordinates (per class): 4 * C

—
g

y g / //
q Pe hel pq
- // // / // /
1% / 1 |— | |—>

1 - // L1 // /]
//// // /// c /// C
) onv Y onv
1/ ¥ RolAlign | [}/ )/
V
256 x14x14 256x14x14 Predict a mask for

each of C classes

Cx28x28

He et al, “Mask R-CNN", arXiv 2017
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Problems with Rol Pool

. " Divide into 2x2
o grid of (roughly)

Project proposal \ gridcells  equal subregions

onto features

Max-pool within
each subregion

>

Region features
(here 512 x 2 x 2;
In practice e.g 512 x 7 x 7)

Input Image Image features: C x Hx W Reqi
egion features always the
(6.9. 3640 x 480) (e.9.512x 20 x 195) s%me size even if irzlput
regions have different sizes!

S PN RENNIeEN A Problem: Region features slightly misaligned
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Rol Align

{3} - ”'
PrOjeCt pl’Oposal \NO Snapplng :

onto features

Input Image Image features: C x H x W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN", ICCV 2017
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Rol Align

‘. — Sample at regular points
: No “snapping”!
Project proposal \ PPINg in each subregion using

onto features bilinear interpolation
- =t =
oo | o0
o0 |00
o0 |00
Input Image Image features: C x H x W
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN", ICCV 2017
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Rol Align

Sample at regular points
in each subregion using

« ing”l bilinear interpolation
Project proposal \‘NO shapping:: )
~

onto features A1
~
- > g ‘ ‘

4 —|—do-|- O
+ - <

! ! F O O

\ ~

| | ~~

l l N

1 | :

i i Feature f,_ for point (x, y)

A is a linear combination of
Input Image Image features: C x Hx W features at its four
(e.g. 3 x 640 x 480) (e.g.512x 20 x 15) neighboring grid cells:

He et al, “Mask R-CNN", ICCV 2017
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Rol Align

Sample at regular points
in each subregion using

« ing”l bilinear interpolation
oy proposal\No shapping’! P
-~ 1,ER® | f, ER

onto features 2
= 12 12
(X,,Y,) Y,)
il (x,y)
o4 < f12f52R5 SER:
] S ¢
| | (XY,) | (X,,Y5)
| |
| |

Feature f  for point (X, y)
is a linear combination of
features at its four
neighboring grid cells:

2
He et al, “Mask R-CNN", ICCV 2017 fxy = Zi,jZl fza] ma‘X(O’ 1 — |'CE o le) maX(O, L~ |y o y]|)

Input Image
(e.g. 3 x 640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)
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Rol Align

Sample at regular points
in each subregion using

« ing”! bilinear interpolation
Project proposal \‘NO shapping:: P

onto features
Max-pool within
each subregion
| |
o000 >
0 0
Region features
o0 |00
(here 512 x 2 x 2;
| In practice e.g 512 x 7 x 7)
Input Image Image features: C x H x W

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

He et al, “Mask R-CNN", ICCV 2017
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Ablation Study on Rol Align

AP APs5, AP;5 | AP  APY  APBY
RolPool 23.6 46.5 21.6 28.2 52.7 26.9
RolAlign | 30.9 51.8 32.1 34.0 55.3 36.4
+7.3 +53 +10.5 +5.8 +2.6 +9.5

(d) RoIAlign (ResNet-50-CS, stride 32): Mask-level and box-level
AP using large-stride features. Misalignments are more severe than
with stride-16 features (Table 2c), resulting in big accuracy gaps.

He et al, “Mask R-CNN", ICCV 2017
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Class-Specific vs. Class-Agnostic Masks

* Our default instantiation predicts class-specific masks, i.e., one mxm
mask per class.

* Mask R-CNN with class-agnostic masks (i.e., predicting a single mxm
output regardless of class) is nearly as effective.

He et al, “Mask R-CNN", ICCV 2017
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Multinomial vs. Independent Masks

* Decouples mask and class prediction

* Generate a mask for each class without competition among classes
(by a per-pixel sigmoid and a binary loss).

AP AP5y  AP75
softmax | 24.8 44.1 235:1

sigmoid | 30.3 51.2 31.5
+5.5 +7.1 +6.4

(b) Multinomial vs. Independent Masks

(ResNet-50-C4):  Decoupling via per-

class binary masks (sigmoid) gives large

gains over multinomial masks (softmax).
He et al, “Mask R-CNN", ICCV 2017
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Mask RCNN: Example Mask Training Target
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Result Visualization

b -

" |

LY

He et al, “Mask R-CNN", ICCV 2017
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Human Pose Visualization

He et al, “Mask R-CNN", ICCV 2017
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Open Source Framework

e Lots of good implementations on GitHub!

e TensorFlow Detection API:
e https://github.com/tensorflow/models/tree/master/research/object_detection

e Faster RCNN, SSD, RFCN, Mask R-CNN, ...

e Detectron2 (PyTorch) :
e https://github.com/facebookresearch/detectron?2

e Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ... Finetune on
your own dataset with pre-trained models

82



3D Object Detection and
Instance Segmentation



3D Object Detection

Slides credit: Stanford CS231N

2D Object Detection:
2D bounding box
(x, ¥, w, h)

3D Object Detection:
3D oriented bounding box

(x,y,z,w,h,1,1,p,y)
Simplified bbox: no roll & pitch

Much harder problem than 2D
object detection!

This i cCo : ,

84



3D Object Detection

/ A point on the image plane

/ corresponds to a ray in the 3D
3Dray space
< P i
?t ‘( B A 2D bounding box on an image
*‘,,: | is a in the 3D space
_ !: £ 2D point
> Localize an object in 3D:

f‘”"ﬁ-;v(

: e 344 Seiv The object can be anywhere in
viewing frustrum el , ‘ the camera viewing frustrum!

Image source: https://www.pcmag.com/encyclopedia_images/_FRUSTUM.GIF

Slides credit: Stanford CS231N
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3D Object Detection from RGB-D

Frustum PointNet

———~

depth to point cloudf =

- -
el T E T

Qi, Charles R., et al. "Frustum pointnets for 3d object detection from rgb-d data." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.
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Pipeline of Frustum PointNet

- - ——— - - -

. l — - (3 “ ’ ‘\
S : 2d region ) point cloud | | segmented | s l
: proposal , in frustum | lobject points, -INet | :
' ' (n points) ! 1 (mpoints) ! - ) o
e : S : B : - ' center|residual Amodal )
g : f—_ | . 3D Instance 2! = . 3D Box -
. - 5 & ' Segmentation [—*| % [ £ 4 translation [—* s S e
e ' CNN 5| | ' ; 2| ' Estimation | | &
& ! 2 I ' * PointNet I | . ;B
[~ ! 3| ! ' | ! PointNet ,
| — | ] [ ! | é
' o o |
\ one-hot class vector,’ % / \ }
v’ ~ ’ 4 N ’ o’ 1
___________________ - e e e e er s v e SO G S W o & T — :
e
Frustum Proposal 3D Instance Segmentation Amodal 3D Box Estimation [ %
< s &%)

Qi, Charles R., et al. "Frustum pointnets for 3d object detection from rgb-d data." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.
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Coordinate Systems for Point Cloud

I Y Ll
. " L]
,' ,I ! l,
1 / ] /
/ I /
,'. ’ l'a o
! .. .I‘I " .. ."
‘: / " ,/ ;
, 1/ frustum +/ maskpoint |
! / . o /7 . ! ’
* + rotation centroid /*
' /
'. /
I ,I
Iy
v
!
(a) camera (b) frustum (¢) 3D mask (d) 3D object
coordinate coordinate coordinate coordinate

Qi, Charles R., et al. "Frustum pointnets for 3d object detection from rgb-d data." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.
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Result Visualization

S R A AL e T
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Deep Sliding Shape

Conv 1
Conv 2

Softm

Conv . Conv
,2_’ Class - Softmax % | Class + Softmax
S Conv S Conv | Li | =
3D Box Smooth 3DBox Smooth |
- = 2 2D VGG on ImageNet
e ,
Space size: 5.2x5.2x2.5m3  Level 1 object proposal ]

Level 2 object proposal
Receptive field: 0.025° m® Receptive field: 0.4° m® Receptive field: 1.0° m?

L1 Smooth

Very expensive to perform sliding windows in 3D!

Song, Shuran, and Jianxiong Xiao. "Deep sliding shapes for amodal 3d object detection in rgb-d images." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016.
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3D Object Detection: Monocular Camera

Candidate sampling in 3D space

Scoring

Faster R-CNN | M

Proposals

2D andidéte boxes
- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.

Slides credit: Stanford CS231N

91



Our idea: “ask” the surface points to
vote for object centers

.  - " J\ "._
S . “’,\\ :
("R~ A ™ N> ~
A“’Z?**J AT . I )
) < 1N -5 vid N &
ot < 7
\\ Ay / \\ ? / ~ <
\ B < % :
3, ‘ ‘ R { 9 3/\ Q'/-" N
.4:" 2 f >

Voting from surface points Detected 3D bounding boxes

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on

Computer Vision. 2019.
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Deep Hough Voting: Detection Pipeline

Input:
point cloud

PointNet++
—_

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019. 93



Deep Hough Voting: Detection Pipeline

Input: Seeds
pOint cloud (XYZ + teature)

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019. 94



Deep Hough Voting: Detection Pipeline

Input: Seeds Votes
]’)Oillt cloud (XYZ + feature) (XY Z + feature)

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019. 95



Deep Hough Voting: Detection Pipeline

Input: Seceds Votes
point cloud (XYZ + feature) (XYZ + feature)

Qi, Charles R., et al. "Deep hough vdtihg for 3d obJect détection in point clouds." proceedings of the IEEE/CVF International Conference o; _

Computer Vision. 2019.
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Deep Hough Voting: Detection Pipeline

Ill[)llt: S(‘(‘(IQ \"()tcg
point cloud (XYZ + feature) (XYZ + feature)
AW 2y

Output:
3D bounding boxes

= table
. » chair

Py
TR

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019.
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Results: SUN RGB-D (single depths)

Image of the scene VoteNet prediction Ground truth
o™ '( 4 ‘.é & N "\ Y.
NN
a‘ ..‘ f.\.‘;‘ _.\;' .. ”
A& /4
KR ALY

-
-~
m
-
=
=
(2]

facebook Al Reseai

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019. 98



Results: ScanNet (3D Reconstruction)

VoteNet prediction Ground truth

(/

'D * >
facebook y @

Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019. 99




3D Instance Segmentation

* Top-Down
* GSPN

* Bottom-Up
* SGPN
* PointGroup
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Introduction to Computer Vision

Next week: Lecture 14,
Self-Attention & Transformer

Embodied Perception and InteraCtiol



