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Introduction to Computer Vision

Lecture 13 
Detection and Instance Segmentation



Logistics

• Assignment 4 (Point Cloud Learning, Detection & RNN)
• To be released on 5/23
• Due on 6/7 11:59PM
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estamos Normalize alignment scores 
to get attention weights
0 < at,i < 1 ∑iat,i = 1

Compute context vector as 
linear combination of hidden 
states
ct = ∑iat,ihi

Use context vector in 
decoder: st = gU(yt-1, st-1, ct)

This is all differentiable! No 
supervision on attention 
weights – backprop through 
everything

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

[START]

Sequence to Sequence with RNNs and Attention

Intuition: Context
vector attends to the 
relevant part of the input 
sequence
“estamos” = “we are”
so maybe a11=a12=0.45, 
a13=a14=0.05

From final hidden state:
Initial decoder state s 0
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Repeat: Use s1 to compute 
new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

To be 
continued in 
next lecture!



Object Detection

Some slides are borrowed from Stanford CS231N.
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Computer Vision Tasks
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• Task: localization + classification

• Output: 2D (axis aligned) bounding box

Object Detection: Single Object
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• How many degree-of-freedom?

• How to parameterize such a bounding box?

• 4 DoF

• x,y,h,w



Object Detection: Single Object
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• Localization + Classification



Object Detection: Single Object
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Object Detection: Single Object
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• Error: (Δ𝑥, Δ𝑦, Δ𝑤, Δℎ)

• L1 loss: Σ|Δ!| — robust, however not good at convergence

• L2 loss: ΣΔ!" (not the same to L2 norm) — not robust to a larger error, 
however good at convergence

• Rooted mean squared loss (RMSE): 
#
$ΣΔ!

" — the gradient of sqrt 

function is bad at 0

Regression Loss
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• Smooth L1 loss (proposed by Fast RCNN, very similar to Huber loss 
widely used in robust optimization)

Regression Loss
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Object Detection: Multiple Objects
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1 bounding box

3 bounding boxes

Many bounding 
boxes!

Different images need different numbers of outputs!



Sliding-Window based Multi-Object Detection
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Sliding-Window based Multi-Object Detection

15



Sliding-Window based Multi-Object Detection
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Sliding-Window based Multi-Object Detection
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Sliding-Window based Multi-Object Detection
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Region Proposals: Selective Search
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R-CNN
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R-CNN
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R-CNN
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R-CNN
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R-CNN
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R-CNN
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R-CNN
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R-CNN
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Problem 2: The 
cropped region 
doesn’t contain 
sufficient information 
to regress bounding 
box refinements.



R-CNN
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Fast R-CNN
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Fast RCNN R-CNN



Fast R-CNN
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Fast RCNN R-CNN



Fast R-CNN
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Fast RCNN R-CNN



Fast R-CNN
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Fast RCNN R-CNN



Fast R-CNN
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Fast RCNN R-CNN



Cropping Features: RoI Pool
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Cropping Features: RoI Pool
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Cropping Features: RoI Pool
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Cropping Features: RoI Pool
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Cropping Features: RoI Pool
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Cropping Features: RoI Pool
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R-CNN vs. Fast R-CNN
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R-CNN vs. Fast R-CNN
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Faster R-CNN
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Region Proposal Network
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Region Proposal Network
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Region Proposal Network
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Region Proposal Network
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Region Proposal Network
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Region Proposal Network
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Training Faster RCNN 
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Inference Time: Two-Stage Detector
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• First stage: 
• Use backbone to extract features
• Use RPN to generate ~ 300 proposals

• Second stage:
• For each proposal, predict class label and bbox refinement
• Perform confidence thresholding to remove low-confidence bbox 

predictions
• Perform non-maximal suppression (NMS) for deduplication

Inference Time
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Input: A list of Proposal boxes B, corresponding confidence scores S (in Faster 
RCNN, simply the classification score) and IoU threshold 𝜏.
Output: A list of detected bounding boxes D.

Non-Maximal Suppression (NMS)

52https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c



Algorithm:
• Initially D is empty
• Select the proposal with highest confidence score, remove it from B and add it 

to the final detection list D. 
• Now compare this proposal with all the proposals — calculate the IoU of this 

proposal with every other proposal. If the IOU is greater than the threshold 𝜏, 
remove that proposal from B.

• Again take the proposal with the highest confidence from the remaining 
proposals in B and remove it from B and add it to D.

• Once again calculate the IOU of this proposal with all the proposals in B and 
eliminate the boxes which have a IoU higher than 𝜏.

• This process is repeated until there are no more proposals left in B.

NMS

53https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c



Speed Comparison
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How to Evaluate Detection?

55

• Good accuracy (precision): minimize false positive

• Good localization (precision): maximize IoU

• Single response constraint (precision): minimize redundant responses

• Good coverage (recall): make sure all edges are detected.

Recall from optimal edge detection, Lecture 02



Evaluation Metric: AP (Average Precision)
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Recall_i = [0, 0.1, 0.2, …, 1.0]. 

• Per category rank the output 
bounding boxes according to the 
confidence (classification score) in a 
descending order.

• Select top n outputs and compute 
recall.

• Precision: the ratio of bboxes that 
satisfy IoU > x% threshold

• Compute the area under precision-
recall curve (approximate by 11 
points).

https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-
a07fe6962cf3

https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3


Evaluation Metric: AP at Different IoU Thres.
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https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-
a07fe6962cf3

https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3


Evaluation Metric: mAP
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•mAP is the mean of AP across different categories 
and/or IoU thresholds. Sometimes m is ignored.

•Examples when evaluating on MS COCO:
•AP
•AP50



Faster RCNN 
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Two-Stage Detector
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Two-Stage Detector
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Do we really need the second stage?



Single-Stage Detectors: YOLO/SSD/RetinaNet
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Object Detection: Lots of Variables
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End-to-End Object Detection with Transformers (DETR)



Instance Segmentation

Some slides are borrowed from Stanford CS231N.
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Computer Vision Tasks
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Different Approaches for Instance Segmentation
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• Bottom-up approach:grouping and then 
classification

• Grouping: group together similar 
data points and represents them 
with a single token

• Top-down approach:object detection 
and then further find a binary mask 
inside the bounding box



Top-Down Approach: Mask R-CNN
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Mask R-CNN
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Problems with RoI Pool
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RoI Align
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RoI Align
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RoI Align
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RoI Align
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RoI Align
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Ablation Study on RoI Align
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• Our default instantiation predicts class-specific masks, i.e., one m×m 
mask per class. 
• Mask R-CNN with class-agnostic masks (i.e., predicting a single m×m 

output regardless of class) is nearly as effective.

Class-Specific vs. Class-Agnostic Masks
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• Decouples mask and class prediction
• Generate a mask for each class without competition among classes 

(by a per-pixel sigmoid and a binary loss).

Multinomial vs. Independent Masks
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Mask RCNN: Example Mask Training Target
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Result Visualization
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Human Pose Visualization
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• Lots of good implementations on GitHub! 

• TensorFlow Detection API: 

• https://github.com/tensorflow/models/tree/master/research/object_detection 

• Faster RCNN, SSD, RFCN, Mask R-CNN, ... 

• Detectron2 (PyTorch) :

• https://github.com/facebookresearch/detectron2 

• Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ... Finetune on 
your own dataset with pre-trained models 

Open Source Framework
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3D Object Detection and 
Instance Segmentation
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3D Object Detection
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Slides credit: Stanford CS231N



3D Object Detection
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Slides credit: Stanford CS231N



3D Object Detection from RGB-D
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Frustum PointNet

Qi, Charles R., et al. "Frustum pointnets for 3d object detection from rgb-d data." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2018.



Pipeline of Frustum PointNet 

87

Qi, Charles R., et al. "Frustum pointnets for 3d object detection from rgb-d data." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2018.



Coordinate Systems for Point Cloud
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Qi, Charles R., et al. "Frustum pointnets for 3d object detection from rgb-d data." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2018.



Result Visualization

89KITTI SUN-RGBD



Deep Sliding Shape
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Song, Shuran, and Jianxiong Xiao. "Deep sliding shapes for amodal 3d object detection in rgb-d images." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2016.

Very expensive to perform sliding windows in 3D!



3D Object Detection: Monocular Camera 
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Slides credit: Stanford CS231N



VoteNet
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Deep Hough Voting: Detection Pipeline
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Deep Hough Voting: Detection Pipeline
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Deep Hough Voting: Detection Pipeline
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Deep Hough Voting: Detection Pipeline
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Deep Hough Voting: Detection Pipeline
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Results: SUN RGB-D (single depths)
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



Results: ScanNet (3D Reconstruction)
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Qi, Charles R., et al. "Deep hough voting for 3d object detection in point clouds." proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2019.



• Top-Down
• GSPN

• Bottom-Up
• SGPN
• PointGroup

3D Instance Segmentation
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Embodied Perception and InteraCtion Lab Spring 2025

Next week: Lecture 14, 
Self-Attention & Transformer

Introduction to Computer Vision


